Способ удаления из газовых потоков серосодержащих соединений, в том числе сероводорода и меркаптанов

Номер патента: 9588

Опубликовано: 28.02.2008

Автор: Ван Де Граф Йолинде Махтелд

Скачать PDF файл.

Формула / Реферат

1. Способ удаления сероводорода, меркаптанов и необязательно диоксида углерода и сернистого карбонила из газового потока, содержащего сероводород, меркаптаны и необязательно диоксид углерода и сернистый карбонил, заключающийся в том, что на первой стадии удаляют основную часть сероводорода, часть меркаптанов и необязательно часть либо основную часть диоксида углерода и сернистого карбонила путем промывания газового потока водным промывочным раствором, содержащим от 10 до 45 мас.% воды в расчете на полное количество раствора, от 10 до 40 мас.% физического растворителя в расчете на полное количество раствора и от 20 до 60 мас.% амина в расчете на полное количество раствора, затем на второй стадии меркаптаны удаляют при помощи молекулярных сит, причем количество меркаптанов, удаленное на первой стадии водным промывочным потоком, составляет от 60 до 96% (от полного количества удаляемых меркаптанов на обоих стадиях), а количество, которое удаляют на второй стадии при помощи молекулярных сит, составляет от 40 до 4% (от полного количества удаляемых меркаптанов на обеих стадиях), и в котором соотношение между количеством меркаптанов, выраженным в ч./млн (об.), и количеством сероводорода, выраженным в об.%, равно по меньшей мере 50.

2. Способ по п.1, в котором совокупный газовый поток содержит от 0,05 до 20 об.% сероводорода, от 10 до 1500 ч./млн (об.) меркаптанов и от 0 до 40 об.% диоксида углерода, предпочтительно от 0,1 до 5 об.% сероводорода, от 20 до 1000 ч./млн (об.) меркаптанов и от 0 до 30 об.% диоксида углерода.

3. Способ по п.2, в котором совокупный газовый поток содержит сероводород в количестве от 0,15 до 0,6 об.%.

4. Способ по п.1, в котором соотношение между количеством меркаптанов, выраженным в ч./млн (об.), и количеством сероводорода, выраженным в об.%, равно по меньшей мере 100, предпочтительно по меньшей мере 200.

5. Способ по п.1, в котором газовым потоком является природный либо попутный газ.

6. Способ по п.1, в котором физическим растворителем является сульфолан.

7. Способ по п.1, в котором амином является вторичный либо третичный амин, предпочтительно аминное соединение, полученное из этаноламина либо его смеси, более предпочтительно DIPA, DEA, MMEA, MDEA либо DEMEA, наиболее предпочтительно DIPA, либо MDEA, либо их смеси.

8. Способ по п.1, в котором водный промывочный раствор содержит предпочтительно от 20 до 35 мас.% воды в расчете на полное количество раствора, от 20 до 35 мас.% физического растворителя и от 40 до 55 мас.% амина.

9. Способ по п.1, в котором газовый поток, полученный на первой стадии, охлаждают до температуры от 5 до 45шС, предпочтительно от 10 до 35шС, после чего от газового потока отделяют любые количества конденсата.

10. Способ по п.1, в котором первую стадию проводят при температуре, по меньшей мере, равной 20шС, предпочтительно от 25 до 90шС, более предпочтительно от 30 до 55шС, при давлении от 15 до 90 бар абсолютного давления.

11. Способ по п.1, в котором на второй стадии используют кристаллические молекулярные сита, предпочтительно сита, имеющие средний диаметр пор, равный 5 A или более, предпочтительно около 6 A.

12. Способ по п.1, в котором вторую стадию проводят при температуре, равной 25шС, и при давлении в диапазоне от 15 до 90 бар абсолютного давления.

13. Способ по п.1, в котором регенерационный газ второй стадии, содержащий меркаптаны, повторно смешивают с исходным газовым потоком либо подвергают обработке в специально выделенном абсорбере.

 

Текст

Смотреть все

009588 Область техники, к которой относится изобретение Настоящее изобретение относится к способу удаления сероводорода, меркаптанов и необязательно диоксида углерода и сернистого карбонила из газового потока, содержащего данные соединения. Удаление серосодержащих соединений из газовых потоков, содержащих такие соединения, всегда имело большое значение в прошлом и имеет еще большее значение сегодня, принимая во внимание непрерывно ужесточающееся природоохранительное законодательство. Такие же требования предъявляют к газообразным продуктам сгорания, получаемым при сжигании органических соединений, таких как уголь, а также для потоков природного газа, используемых, например, для получения синтез-газа и для бытового потребления либо транспортируемых в виде жидкого природного газа. Серосодержащие загрязнители в потоках природного газа включают сероводород и меркаптаны. Меркаптаны вследствие их пахучей природы можно обнаруживать при уровнях концентраций порядка нескольких частей на миллион. Таким образом, для потребителей природного газа желательно иметь пониженные концентрации меркаптанов, например до менее 5 либо даже менее 2 об.ч. на миллион, и полную концентрацию серосодержащих соединений, например до менее 30 либо предпочтительно менее 20 об.ч. на миллион, например 15 либо 10 об.ч. на миллион. В технических характеристиках товарного газа зачастую упоминаются концентрации совокупной серы, меньшие 4 об.ч. на миллион. В многочисленных скважинах по добыче природного газа получают то, что называется высокосернистым газом, то есть природный газ, содержащий сероводород, зачастую в смеси с меркаптанами,при этом полное количество присутствующих серосодержащих соединений имеют концентрации, которые делают природный газ непригодным для непосредственного использования. Были приложены значительные усилия по отысканию эффективных и экономичных способов удаления данных нежелательных соединений. В дополнение к этому, природный газ также может содержать переменные количества диоксида углерода и сернистого карбонила, которые в зависимости от варианта использования природного газа зачастую необходимо удалить, по меньшей мере, частично. Предшествующий уровень техники Известно несколько способов удаления серосодержащих соединений и необязательно диоксида углерода и сернистого карбонила из газовых потоков, таких как природный газ. Данные способы основаны на физической и/или химической абсорбции, адсорбции на сплошном слое и/или химической реакции. Способам физической и/или химической абсорбции свойственен недостаток, заключающийся в том, что при их использовании зачастую сталкиваются с трудностью достижения низкой концентрации нежелательных серосодержащих соединений, если только не используются чрезвычайно большие реакторы. Способам адсорбции на сплошном слое свойственен недостаток, заключающийся в том, что они позволяют адсорбировать только ограниченные количества нежелательных соединений, в то время как регенерацию провести относительно непросто. Регенерация в особенности больших сплошных слоев занимает относительно большие промежутки времени, и для этого требуются непропорционально большие количества регенерационного газа. Химические способы в общем случае позволяют удалить диоксид углерода и/или сероводород без больших затруднений, однако, им свойственен недостаток, заключающийся в том, что они не позволяют эффективно удалить меркаптаны и зачастую приводят к получению больших количеств отходов. С особой проблемой сталкиваются в способах, в которых сероводород необходимо удалить в комбинации с относительно большим количеством меркаптанов. Такие способы были описаны в литературе. В патенте US 4957715 описывается способ, в котором из газового потока удаляют сероводород, алкилмеркаптаны и диоксид углерода при использовании на первой стадии адсорбента для удаления сероводорода и части меркаптанов с последующим проведением обработки промыванием на второй стадии для удаления диоксида углерода и дополнительной части меркаптанов. Однако для такого способа требуются большие количества регенерируемых адсорбентов, в особенности если количество серосодержащих соединений в исходном газе велико. В патенте US 5700438 описывается способ удаления сероводорода и меркаптанов из газовых потоков в результате введения потока в контакт с соединениями меди. Однако это дорогостоящий и трудоемкий способ. В патенте US 5424051 описывается способ, в котором удаляют диоксид углерода, меркаптаны и сероводород в результате удаления сначала диоксида углерода при использовании адсорбента и удаления на второй стадии диоксида углерода, сероводорода и меркаптанов при использовании щелочной газоочистки. Данный способ требует значительных финансовых и трудовых затрат. В патенте US 4311680 описывается способ удаления сероводорода и меркаптанов при использовании неподвижного слоя оксида железа с последующей регенерацией абсорбента в результате проведения реакции с пероксидом водорода. Для такого способа требуются большие количества абсорбентов, в то время как проведение регенерации стоит дорого и требует больших затрат труда. В настоящее время обнаружено, что серосодержащие соединения, в особенности сероводород в комбинации с меркаптанами и необязательно диоксид углерода и сернистый карбонил, можно удалить из газовых потоков, в особенности из потоков природного газа, при использовании комбинированного способа, в котором на первой стадии по способу физической/химической абсорбции удаляют основную часть сероводорода, по меньшей мере часть диоксида углерода (если таковой присутствует) и часть меркаптанов, в то время как на второй стадии - на стадии адсорбции на сплошном слое - удаляют остаточ-1 009588 ный сероводород и остаточные меркаптаны и другие серосодержащие соединения. В описанном выше способе используют хорошо отработанный способ физической/химической абсорбции. Такой способ описывали, например, в патентах GB 2103645 и GB 2103646, включенных в настоящий документ для справки. Очень эффективно удаляют почти весь сероводород. При необходимости в данной части способа также удаляют и диоксид углерода, который необходимо удалить. Поскольку на первой стадии необходимо удалить только часть меркаптанов, в способе не требуется использовать очень большие и неэффективные реакторы. На второй стадии для удаления остальной части меркаптанов можно использовать относительно небольшой сплошной адсорбционный слой. Это обуславливается тем фактом, что на первой стадии вместе с частью меркаптанов уже удаляют почти весь сероводород. Регенерация такого слоя очень больших затрат труда не требует и с трудностями не сопряжена. Таким образом, упомянутая выше комбинация способов удаления серы в результате приводит к общему эффективному удалению сероводорода, меркаптанов и необязательно части диоксида углерода и сернистого карбонила при устранении недостатков только одной технологии либо других технологий. В дополнение к этому, оптимизацию способа обеспечивает обработка регенерационного газа адсорбера со сплошным слоем в специально выделенном абсорбере. После этого обогащенный абсорбатом растворитель из специально выделенного абсорбера регенерируют в том же самом регенераторе, что и используемый для основного способа. Наблюдали, что использование комбинированного физического/химического абсорбента вместо только водного химического абсорбента также в результате приводит к появлению возможности импульсного обезгаживания с удалением любого количества диоксида углерода при относительно высоких давлениях (например, в диапазоне от 5 до 15 бар абсолютного давления). Это уменьшает требования к повторному повышению давления, например, в случае повторного нагнетания. Раскрытие сущности изобретения Настоящее изобретение предлагает способ удаления сероводорода, меркаптанов и необязательно диоксида углерода и сернистого карбонила из газового потока, содержащего сероводород, меркаптаны и необязательно диоксид углерода, в результате удаления на первой стадии основной части сероводорода,части меркаптанов и необязательно части либо основной части диоксида углерода в результате промывания газового потока водным промывочным раствором, содержащим от 10 до 45 мас.%, от 10 до 40 мас.% физического растворителя и от 20 до 60 мас.% амина, воды в расчете на полное количество раствора,затем во второй стадии меркаптаны удаляют при использовании молекулярных сит, причем количество меркаптанов, которое удаляют водным промывочным потоком, составляет от 60 до 96% (от количества удаляемых меркаптанов), а их количество, которое удаляют при помощи молекулярных сит, составляет от 40 до 4% (от количества удаляемых меркаптанов). Способ является в особенности подходящим для газовых потоков, содержащих большие количества сероводорода и, необязательно, большие количества диоксида углерода, поскольку в способе адсорбции из жидкости происходит эффективное удаление обоих соединений. Способ является в особенности подходящим тогда, когда соотношение количеств меркаптана/сероводорода будет велико и газовый поток после первой стадии будет содержать относительно большое количество меркаптанов. Способ можно использовать в случае обычных меркаптанов (в особенности C1-С 10 меркаптанов, говоря более конкретно,С 1-С 4 меркаптанов), также без каких-либо проблем с метилмеркаптаном, который рассматривается в качестве одного из наиболее трудных для удаления меркаптанов при использовании адсорбционных технологий. Исходный газ в способе настоящего изобретения может содержать малые, а также большие количества серосодержащих соединений и диоксида углерода. В подходящем случае совокупный исходный газовый поток содержит от 0,05 до 20 об.% сероводорода, от 10 до 1500 ч./млн (об.) меркаптанов и от 0 до 40 об.% диоксида углерода, предпочтительно от 0,1 до 5 об.% сероводорода, от 20 до 1000 ч./млн (об.) меркаптанов и от 0 до 30 об.% диоксида углерода. В специальном варианте реализации изобретения совокупный газовый поток содержит сероводород в количестве в диапазоне от 0,15 до 1,0 об.%. Присутствие данных количеств H2S делает удаление меркаптанов затруднительным, поскольку предпочтительно адсорбируется H2S. Поэтому газовый поток, содержащий сероводород в количестве в диапазоне от 0,15 до 1,0 об.%, рассматривается в качестве газового потока, из которого удалить все меркаптаны очень непросто. Способ, соответствующий изобретению, является в особенности подходящим для удаления меркаптанов из исходных газовых потоков, в которых соотношение количества меркаптанов (выраженного в об.ч./млн) и количества сероводорода (выраженного в об.%) велико. Вследствие наличия данного высокого соотношения газовый поток после первой стадии будет характеризоваться (относительно) высоким уровнем содержания меркаптанов. Данные меркаптаны без проблем адсорбируются на второй стадии. Таким образом, способ предпочтительно используют для очистки исходных газовых потоков, в которых соотношение между количеством меркаптанов (выраженным в ч./млн (об. и количеством сероводорода(выраженным в об.%) равно по меньшей мере 50, более предпочтительно по меньшей мере 100, более предпочтительно по меньшей мере 200, еще более предпочтительно превышает 250. В особенно подходящем случае исходный газовый поток представляет собой природный либо по-2 009588 путный газ, но подвергать обработке можно также и другие газовые потоки, например потоки водородсодержащего нефтезаводского газа, например получаемые после протекания реакции десульфуризации,и потоки синтез-газа. Природный газ представляет собой общий термин, который используется по отношению к смесям легких углеводородов и необязательно инертных газов (азота, диоксида углерода, гелия), получаемым из скважин по добыче природного газа. Основным компонентом природного газа является метан. Кроме того, зачастую присутствуют этан, пропан и бутан. В некоторых случаях могут присутствовать и небольшие количества высших углеводородов, зачастую обозначаемых как газоконденсатные жидкости либо конденсаты природного газа. При получении природного газа вместе с нефтью его обычно называют попутным газом. В природном газе в переменных количествах могут присутствовать сероводород, меркаптаны, сульфиды, дисульфиды, тиофены и ароматические меркаптаны. Первая стадия настоящего изобретения, по-видимому, очень эффективна для удаления сероводорода (и по меньшей мере части диоксида углерода). При использовании способа промывания исходный газовый поток промывают при помощи химического растворителя - водного раствора амина - и физического растворителя. Использование водных растворов аминов, содержащих физический растворитель,для удаления так называемых кислотных газов, таких как сероводород и необязательно диоксид углерода и/или COS, из газового потока, содержащего данные соединения, было описано уже давно. См., например, работы A.L. Kohl and F.С. Riesenfeld, 1974, Gas Purification, 2nd edition, Gulf Publishing Co. Houston иR.N. Maddox, 1974, Gas and Liquid Sweetening, Campbell Petroleum Series. В зависимости от механизма абсорбции кислотных компонентов на уровне промышленных масштабов, в основном, существуют две категории абсорбционных растворителей: химические растворители и физические растворители. Каждый растворитель обладает своими собственными преимуществами и недостатками, относящимися к таким характеристикам, как абсорбционная емкость, кинетика, регенерируемость, селективность, стойкость, коррозионная активность, требования к нагреванию/охлаждению и т.п. Химические растворители, которые являются подходящими в способе настоящего изобретения,представляют собой первичные, вторичные и/или третичные амины, полученные из алканоламинов, в частности амины получают из этаноламина, в особенности моноэтаноламина (МЕА), диэтаноламина(DEA), триэтаноламина (TEA), диизопропаноламина (DIPA) и метилдиэтаноламина (MDEA) либо их смесей. Физические растворители, которые являются подходящими в способе настоящего изобретения,представляют собой циклотетраметиленсульфон и его производные, амиды алифатических кислот, N-метилпирролидон, N-алкилированные пирролидоны и соответствующие пиперидоны, метанол, этанол и смеси диалкиловых эфиров полиэтиленгликолей либо их смеси. Смешанные системы демонстрируют хорошую абсорбционную емкость и хорошую селективность при одновременной умеренности капитальных вложений и эксплуатационных расходов. Они обладают очень хорошими эксплуатационными характеристиками при высоких давлениях, в особенности в диапазоне от 20 до 90 бар абсолютного давления. Предпочтительно на стадии удаления сероводорода происходит удаление от 90 до 100 мас.% сероводорода в расчете на полную массу сероводорода, присутствующего в газовом потоке, предпочтительно от 95 до 100 мас.%, в частности сероводород удаляют до уровня, меньшего 10 об.ч./млн, говоря более конкретно, до уровня, меньшего 5 об.ч./млн. Предпочтительным физическим растворителем является сульфолан. Предпочтительным амином является вторичный либо третичный амин, предпочтительно аминное соединение, полученное из этаноламина, говоря более конкретно, DIPA, DEA, ММЕА (монометилэтаноламина), MDEA либо DEMEA (диэтилмоноэтаноламина), предпочтительно DIPA либо MDEA. Водный промывочный раствор содержит предпочтительно от 15 до 35 мас.%, от 20 до 40 мас.% физического растворителя и от 40 до 55 мас.% амина, воды в расчете на полное количество раствора. В исключительно подходящем случае газовый поток, полученный на первой стадии, сначала охлаждают до температуры в диапазоне от 5 до 45 С, предпочтительно от 10 до 35 С, после чего от газового потока отделяют любые количества конденсата и затем проводят вторую стадию. В дополнение к этому, газовый поток, полученный на первой стадии, охлаждают по меньшей мере на 10 С, предпочтительно 20 С. В подходящем случае количество меркаптанов, которое удаляют при использовании водного промывочного потока на первой стадии, находится в диапазоне от 70 до 93% (от количества удаляемых меркаптанов), предпочтительно от 75 до 90%, а количество, которое удаляют при использовании молекулярных сит, находится в диапазоне от 30 до 7% (от количества удаляемых меркаптанов), предпочтительно от 25 до 10%. На первой стадии удаления удаляют по меньшей мере 90 мас.% сероводорода (в расчете на полное количество сероводорода, присутствующего в газовом потоке), предпочтительно 95 мас.%, более предпочтительно 98 мас.%. Количество меркаптанов в газовом потоке, которое подвергают обработке на второй стадии, в подходящем случае находится в диапазоне от 5 до 60 об.ч./млн, предпочтительно от 10 до 50 об.ч./млн. В подходящем случае первую стадию изобретения проводят при температуре, по меньшей мере равной 20 С, предпочтительно от 25 до 90 С, более предпочтительно от 30 до 55 С, при давлении от 15-3 009588 до 90 бар абсолютного давления. На второй стадии предпочтительно используют кристаллические молекулярные сита, более предпочтительно сита, имеющие средний диаметр пор, равный 5 или более, в особенности находящийся в диапазоне от 6 до 13 . Вторую стадию в подходящем случае проводят при температуре 25 С и давлении в диапазоне от 15 до 90 бар абсолютного давления. Регенерацию слоев молекулярных сит можно провести при использовании подходящих инертных газов. Предпочтительно использовать углеводородный поток, в особенности углеводородный поток, который получают по способу,соответствующему настоящему изобретению. Регенерационный газ, содержащий меркаптаны второй стадии, предпочтительно повторно смешивают с исходным газовым потоком. Предпочтительно использование специально выделенного абсорбера (подобного абсорберу, используемому в основном способе). Обогащенный абсорбатом растворитель из специально выделенного абсорбера регенерируют в том же самом регенераторе, что и используемый в основном способе. Способ, соответствующий настоящему изобретению, можно реализовать в непрерывном режиме,предпочтительно при использовании непрерывного способа регенерации водного промывочного раствора и двух либо более чем двух реакторов, содержащих молекулярные сита. В способе регенерации проводят стравливание давления у обогащенного абсорбатом промывочного раствора, обычно в одну либо две стадии, после чего увеличивают температуру. Предпочтительно увеличение температуры проводят постадийно. В случае использования двух либо более чем двух реакторов, содержащих молекулярные сита, по меньшей мере один реактор будет функционировать в режиме адсорбирования и по меньшей мере один реактор будет функционировать в режиме десорбирования. В зависимости от фактической ситуации может иметь место комбинация из двух, трех, четырех либо даже большего количества реакторов, из которых один либо несколько будут функционировать в режиме абсорбирования, тогда как другие будут функционировать на различных стадиях режима десорбирования. На второй стадии настоящего изобретения используют молекулярные сита. Данные молекулярные сита коммерчески доступны. Молекулярные сита включают небольшие частицы цеолитов, диспергированные в связующем,обычно оксиде алюминия. Цеолиты предпочтительно включают цеолит типа А либо цеолит типа X. В особенности подходящим в способе настоящего изобретения является использование на стадии 2 адсорбента, включающего по меньшей мере два слоя, содержащих молекулярные сита, при этом один слой содержит молекулярные сита, имеющие диаметр пор, равный 3 либо 4 , удаляющие воду из газового потока до того, как последний будет подвергнут обработке во втором слое, а второй слой содержит молекулярные сита, имеющие диаметр пор, равный 5 или более. Молекулярные сита, обеспечивающие удаление воды, едва ли будут адсорбировать какие-либо серосодержащие соединения. В общем случае емкость таких молекулярных сит будет превышать емкость молекулярных сит с более значительным диаметром пор. Количество воды, удаляемое на молекулярных ситах, имеющих небольшой диаметр пор, предпочтительно равно по меньшей мере 60 мас.% от количества присутствующей воды, предпочтительно по меньшей мере 90 мас.%. В исключительно подходящем случае воду удаляют до уровня содержания в подвергнутом обработке газе, меньшего 1 мас.%, предпочтительно меньшего 100 мас.ч./млн. Для того, чтобы обеспечить удаление серосодержащих соединений, второй и последующие слои в подходящем случае будут содержать молекулярные сита, имеющие диаметр пор, равный 5 или более. В дополнительном предпочтительном варианте реализации используют по меньшей мере два слоя, содержащих молекулярные сита, имеющие большой диаметр пор, при этом предпочитается, когда один слой содержит молекулярные сита, имеющие диаметр пор, равный 5 , а другой слой содержит молекулярные сита, имеющие диаметр пор, равный 6 и более, предпочтительно 1 . Молекулярные сита,имеющие диаметр пор, равный 5 , обеспечивают удаление сероводорода (если таковой присутствует),метилмеркаптана и некоторого количества этилмеркаптана, в то время как второй слой обеспечивает удаление остального количества этилмеркаптана и высших меркаптанов. Необходимо понимать, что указанные выше слои можно использовать в одной индивидуальной емкости или же их можно распределить между двумя либо более чем двумя емкостями. Преимущество использования более чем одной емкости заключается в том, что каждую емкость можно использовать и подвергать регенерации в наиболее оптимальных условиях. Обогащенный абсорбатом растворитель, полученный в способе изобретения, содержит сероводород, меркаптаны и необязательно диоксид углерода и сернистый карбонил, и он также может содержать значительные количества растворенных некислотных компонентов из подвергаемой очистке газовой смеси, например углеводородов, монооксида углерода и/или водорода. В подходящем случае насыщенный абсорбатом растворитель регенерируют в регенераторе при относительно низком давлении и высокой температуре. Получают обедненный абсорбатом растворитель и газовый поток, содержащий сероводород, меркаптаны и необязательно диоксид углерода и сернистый карбонил. Может оказаться выгодным удаление, по меньшей мере частичное, данных некислотных компонентов из обогащенного абсорбатом растворителя в результате проведения импульсного обезгаживания при дросселировании до давления, величина которого превышает величину суммы парциальных давлений, относящихся к сероводороду и диоксиду углерода, присутствующим в обогащенном абсорбатом растворителе. При таком способе-4 009588 из растворителя вместе с некислотными соединениями высвобождаются только незначительные количества сероводорода и диоксида углерода. На второй стадии обогащенный абсорбатом растворитель подвергают импульсному обезгаживанию при дросселировании до давления, величина которого уступает величине суммы парциальных давлений сероводорода и диоксида углерода, присутствующих в обогащенном абсорбатом растворителе при преобладающей температуре, то есть до величины давления,обычно находящейся в диапазоне от 1 до 5 бар абсолютного давления. Предпочтительно импульсное обезгаживание осуществляют при атмосферном давлении. Температура в ходе последней операции импульсного обезгаживания в подходящем случае составляет от 50 до 120 С, предпочтительно от 60 до 90 С. ФОРМУЛА ИЗОБРЕТЕНИЯ 1. Способ удаления сероводорода, меркаптанов и необязательно диоксида углерода и сернистого карбонила из газового потока, содержащего сероводород, меркаптаны и необязательно диоксид углерода и сернистый карбонил, заключающийся в том, что на первой стадии удаляют основную часть сероводорода, часть меркаптанов и необязательно часть либо основную часть диоксида углерода и сернистого карбонила путем промывания газового потока водным промывочным раствором, содержащим от 10 до 45 мас.% воды в расчете на полное количество раствора, от 10 до 40 мас.% физического растворителя в расчете на полное количество раствора и от 20 до 60 мас.% амина в расчете на полное количество раствора, затем на второй стадии меркаптаны удаляют при помощи молекулярных сит, причем количество меркаптанов, удаленное на первой стадии водным промывочным потоком, составляет от 60 до 96% (от полного количества удаляемых меркаптанов на обоих стадиях), а количество, которое удаляют на второй стадии при помощи молекулярных сит, составляет от 40 до 4% (от полного количества удаляемых меркаптанов на обеих стадиях), и в котором соотношение между количеством меркаптанов, выраженным в ч./млн (об.), и количеством сероводорода, выраженным в об.%, равно по меньшей мере 50. 2. Способ по п.1, в котором совокупный газовый поток содержит от 0,05 до 20 об.% сероводорода, от 10 до 1500 ч./млн (об.) меркаптанов и от 0 до 40 об.% диоксида углерода, предпочтительно от 0,1 до 5 об.% сероводорода, от 20 до 1000 ч./млн (об.) меркаптанов и от 0 до 30 об.% диоксида углерода. 3. Способ по п.2, в котором совокупный газовый поток содержит сероводород в количестве от 0,15 до 0,6 об.%. 4. Способ по п.1, в котором соотношение между количеством меркаптанов, выраженным в ч./млн(об.), и количеством сероводорода, выраженным в об.%, равно по меньшей мере 100, предпочтительно по меньшей мере 200. 5. Способ по п.1, в котором газовым потоком является природный либо попутный газ. 6. Способ по п.1, в котором физическим растворителем является сульфолан. 7. Способ по п.1, в котором амином является вторичный либо третичный амин, предпочтительно аминное соединение, полученное из этаноламина либо его смеси, более предпочтительно DIPA, DEA,MMEA, MDEA либо DEMEA, наиболее предпочтительно DIPA, либо MDEA, либо их смеси. 8. Способ по п.1, в котором водный промывочный раствор содержит предпочтительно от 20 до 35 мас.% воды в расчете на полное количество раствора, от 20 до 35 мас.% физического растворителя и от 40 до 55 мас.% амина. 9. Способ по п.1, в котором газовый поток, полученный на первой стадии, охлаждают до температуры от 5 до 45 С, предпочтительно от 10 до 35 С, после чего от газового потока отделяют любые количества конденсата. 10. Способ по п.1, в котором первую стадию проводят при температуре, по меньшей мере, равной 20 С, предпочтительно от 25 до 90 С, более предпочтительно от 30 до 55 С, при давлении от 15 до 90 бар абсолютного давления. 11. Способ по п.1, в котором на второй стадии используют кристаллические молекулярные сита,предпочтительно сита, имеющие средний диаметр пор, равный 5 или более, предпочтительно около 6 . 12. Способ по п.1, в котором вторую стадию проводят при температуре, равной 25 С, и при давлении в диапазоне от 15 до 90 бар абсолютного давления. 13. Способ по п.1, в котором регенерационный газ второй стадии, содержащий меркаптаны, повторно смешивают с исходным газовым потоком либо подвергают обработке в специально выделенном абсорбере. Евразийская патентная организация, ЕАПВ Россия, 109012, Москва, Малый Черкасский пер., 2/6

МПК / Метки

МПК: C10L 3/10, B01D 53/14, B01D 53/04

Метки: газовых, способ, меркаптанов, числе, сероводорода, серосодержащих, потоков, соединений, том, удаления

Код ссылки

<a href="https://easpatents.com/6-9588-sposob-udaleniya-iz-gazovyh-potokov-serosoderzhashhih-soedinenijj-v-tom-chisle-serovodoroda-i-merkaptanov.html" rel="bookmark" title="База патентов Евразийского Союза">Способ удаления из газовых потоков серосодержащих соединений, в том числе сероводорода и меркаптанов</a>

Похожие патенты