Ограниченный по температуре нагреватель с трубопроводом, по существу электрически изолированным от пласта
Формула / Реферат
1. Способ нагрева подземного углеводородсодержащего пласта с использованием системы, содержащей
трубопровод, расположенный в отверстии в пласте, причем трубопровод содержит ферромагнитный материал, и
электрический проводник, расположенный внутри трубопровода и электрически соединенный с трубопроводом на конце трубопровода или вблизи конца трубопровода, так что электрический проводник и трубопровод соединены последовательно, причем направление электрического тока в электрическом проводнике, по существу, противоположно направлению электрического тока в трубопроводе при подаче электрического тока в систему;
включающий подачу электрического тока в систему, при этом поток электронов, по существу, ограничен внутри трубопровода, а трубопровод выделяет тепло и нагревает пласт при подаче электрического тока в систему, отличающийся тем, что
внешнюю сторону трубопровода электрически изолируют от пласта электрически изолирующим слоем на поверхности трубопровода;
трубопровод конфигурируют так, что длина внешней окружности трубопровода больше, чем длина внешней окружности электрического проводника, при этом тепло, выделяющееся в стенке трубопровода, передается от периферии трубопровода в пласт, благодаря чему трубопровод выделяет большую часть тепловой мощности системы; а
толщину стенки трубопровода выбирают равной по меньшей мере одной глубине скин-слоя ферромагнитного материала при 25°С, благодаря чему поток электронов, по существу, ограничивается внутри трубопровода электромагнитным полем, создаваемым при протекании электрического тока в электрическом проводнике, так что на внешней поверхности трубопровода или вблизи нее потенциал, по существу, равен нулю при 25°С.
2. Способ по п.1, отличающийся тем, что трубопровод находится в непосредственной близости от пласта.
3. Способ по любому из пп.1, 2, отличающийся тем, что трубопровод электрически изолирован по меньшей мере от одного смежного трубопровода, расположенного в пласте.
4. Способ по любому из пп.1-3, отличающийся тем, что указанное отверстие имеет первый конец, находящийся в первом местоположении на поверхности, и второй конец, находящийся во втором местоположении на поверхности пласта.
5. Способ по любому из пп.1-4, отличающийся тем, что большая часть трубопровода ориентирована, по существу, горизонтально в углеводородном слое пласта.
6. Способ по любому из пп.1-5, отличающийся тем, что электрический проводник, по существу, электрически изолирован от трубопровода по длине трубопровода, причем проводник электрически соединен с трубопроводом вблизи конца трубопровода.
7. Способ по любому из пп.1-6, отличающийся тем, что система дополнительно содержит один или более центраторов для того, чтобы электрически отделить трубопровод от электрического проводника.
8. Способ по любому из пп.1-7, отличающийся тем, что система дополнительно содержит электрически изолирующий слой на внешней поверхности электрического проводника.
9. Способ по любому из пп.1-8, отличающийся тем, что трубопровод выполнен с возможностью обеспечения первой выходной тепловой мощности ниже температуры Кюри ферромагнитного элемента, при этом трубопровод выполнен с возможностью обеспечения автоматически второй выходной тепловой мощности, когда температура приблизительно равна или выше температуры Кюри ферромагнитного элемента, причем вторая выходная тепловая мощность меньше по сравнению с первой выходной тепловой мощностью.
10. Способ по любому из пп.1-9, отличающийся тем, что электрический проводник представляет собой изолированный проводник, причем изолированный проводник включает в себя электропроводящую сердцевину внутри электропроводящей оболочки с электрической изоляцией между сердцевиной и оболочкой.
11. Способ по п.10, отличающийся тем, что сердцевина выполнена из меди, а оболочка представляет собой неферромагнитную нержавеющую сталь.
12. Способ по любому из пп.1-11, отличающийся тем, что в системе отношение диапазона изменения равно по меньшей мере 2:1.
13. Способ по любому из пп.1-12, отличающийся тем, что трубопровод имеет длину по меньшей мере 100 м, по меньшей мере 500 м или по меньшей мере 1000 м и находится в углеводородном слое пласта.
14. Способ по любому из пп.1-13, отличающийся тем, что трубопровод выполнен с возможностью протекания флюида через трубопровод с целью (а) подогрева трубопровода и системы и/или (b) рекуперации тепла из системы.
15. Способ по любому из пп.1-14, отличающийся тем, что электрический проводник представляет собой трубчатый проводник с отверстиями на конце электрического проводника или вблизи конца, причем конфигурация отверстий обеспечивает протекание флюида между внутренней частью электрического проводника и трубопроводом.
16. Способ по п.1, отличающийся тем, что тепло в пласт передают таким образом, что, по меньшей мере, некоторые углеводороды подвергаются пиролизу в пласте.
17. Способ по п.16, отличающийся тем, что дополнительно включает в себя подачу горячего теплоносителя в трубопровод для обеспечения передачи тепла в пласт.
18. Способ по п.17, отличающийся тем, что горячий теплоноситель представляет собой подогретую воду, водяной пар и/или подогретый диоксид углерода.
19. Способ по любому из пп.16-18, отличающийся тем, что дополнительно включает в себя добычу из пласта флюида, предназначенного для переработки в транспортное топливо.
20. Способ по любому из пп.16-19, отличающийся тем, что дополнительно включает в себя подачу текучей среды в трубопровод с целью рекуперации тепла из системы.
21. Способ установки системы из п.1 в отверстии, включающий разматывание трубопровода и электрического проводника с одной или более катушек и размещение трубопровода и электрического проводника в отверстии в пласте.
Текст
ОГРАНИЧЕННЫЙ ПО ТЕМПЕРАТУРЕ НАГРЕВАТЕЛЬ С ТРУБОПРОВОДОМ, ПО СУЩЕСТВУ, ЭЛЕКТРИЧЕСКИ ИЗОЛИРОВАННЫМ ОТ ПЛАСТА(71)(73) Заявитель и патентовладелец: ШЕЛЛ ИНТЕРНЭШНЛ РИСЕРЧ МААТСХАППИЙ Б.В. (NL) Винигар Харолд Дж., Сэндберг Честер Ледли (US) Представитель: Изобретение относится к системе для нагревания содержащего углеводороды пласта, которая включает в себя трубопровод, расположенный в отверстии в пласте. Внутри трубопровода расположен электрический проводник. Электрический проводник электрически соединн с трубопроводом на его конце или вблизи конца, так что электрический проводник и трубопровод соединены последовательно. При подаче электрического тока в систему направление электрического тока в электрическом проводнике, по существу, противоположно направлению электрического тока в трубопроводе. Поток электронов, по существу, ограничен внутренней стороной трубопровода из-за действия электромагнитного поля, генерируемого при протекании электрического тока в электрическом проводнике, так что на внешней поверхности трубопровода или вблизи нее потенциал, по существу, равен нулю при 25 С. Трубопровод имеет такую конфигурацию, что тепло выделяется и нагревает пласт при подаче электрического тока в систему. 014215 Область техники, к которой относится изобретение Настоящее изобретение относится в общем к способам и системам для добычи углеводородов, водорода и/или других продуктов из различных подземных пластов, таких как пласты, содержащие углеводороды. В частности, определенные варианты изобретения относятся к нагреванию выбранной части ила частей пластов с применением ограниченных по температуре нагревателей и трубопроводов, которые электрически изолированы от пласта. Уровень техники Углеводороды, которые получают из подземных пластов, часто используют в качестве энергетических ресурсов, в качестве исходного сырья и продуктов потребления. Озабоченность в связи с истощением доступных углеводородных ресурсов и проблемы общего снижения качества полученных углеводородов привели к разработке способов более эффективного извлечения, переработки и/или использования доступных углеводородных ресурсов. Для удаления углеводородсодержащих материалов из подземных пластов можно использовать процессы обработки внутри пласта (in situ). Для того чтобы обеспечить более легкое извлечение углеводородного материала из подземного пласта, может возникнуть необходимость изменения химических и/или физических свойств углеводородного материала внутри подземного пласта. Эти химические и физические изменения могут включать реакции in situ, в которых образуются извлекаемые текучие среды, изменение состава, изменение растворимости, изменение плотности, изменение фазового состояния и/или изменение вязкости углеводородного материала внутри пласта. Текучая среда (флюид) может представлять собой (но не ограничивается указанным) газ, жидкость, эмульсию,суспензию и/или поток твердых частиц, для которого характеристики течения подобны потоку жидкости. Нагреватели могут быть помещены в ствол скважины для того, чтобы нагреть пласт в ходе процесса внутренней обработки. Примеры процессов внутренней обработки, в которых используются скважинные нагреватели, проиллюстрированы в патентах США 2634961 (автор Ljungstrom); 2732195(Ljungstrom); 2780450 (Ljungstrom); 2789805 (Ljungstrom); 2923535 (Ljungstrom) и 4886118 (Van Meurs и др.). Воздействие тепла на пласт нефтеносных сланцев описано в патентах США 2923535 (Ljungstrom) и 4886118 (Van Meurs и др.). Тепло может быть подведено в пласт нефтеносного сланца с целью пиролиза керогена в пласте нефтеносного сланца. Кроме того, тепло может разрушать пласт с целью повышения проницаемости пласта. Повышенная проницаемость может обеспечить перемещение флюида пласта к эксплуатационной скважине, где флюид извлекается из пласта нефтеносного сланца. Например, в некоторых способах, раскрытых в публикациях Ljungstrom, кислородсодержащая газовая среда вводится в проницаемый пласт, предпочтительно в ещ нагретом состоянии со стадии подогрева, для того чтобы инициировать горение. Для нагревания подземных пластов могут быть использованы источники тепла. Электрические нагреватели могут быть использованы для того, чтобы нагреть подземный пласт за счт излучения и/или электропроводности. Электрический нагреватель может быть омическим тепловым элементом. В патенте США 2548360 (Germain) описан электрический нагревательный элемент, который расположен внутри вязкой нефти в стволе скважины. Нагревательный элемент нагревает и разжижает нефть, обеспечивая возможность выкачивания нефти из скважины. В патенте США 4716960 (Eastlund и др.) описаны электрически нагреваемые трубы нефтяной скважины за счт пропускания тока относительно низкого напряжения через трубы, для того чтобы предотвратить образование твердого вещства. В патенте США 5065818 (Van Egmond) описан электрический нагревательный элемент, который цементируется в стволе скважины, без корпуса, окружающего нагревательный элемент. В патенте США 6023554 (Vinegar и др.) описан электрический нагревательный элемент, который размещн в оболочке. Этот нагревательный элемент генерирует энергию излучения, которая нагревает оболочку. Между оболочкой и пластом может быть размещн твердый гранулированный материал наполнителя. Оболочка может нагревать материал наполнителя за счт теплопроводности, и наполнитель, в свою очередь, нагревает пласт за счт теплопроводности. В некоторых пластах могут находиться тонкие углеводородные слои или тонкие богатые слои в мощном углеводородном слое. Может быть выгодным использовать нагреватели, которые электрически изолированы от пласта, для нагревания и/или обработки пластов такого типа. Электрическая изоляция нагревателя от пласта снижает электрические потери в пласте и повышает тепловую эффективность нагревателя. Кроме того, электрическая изоляция нагревателя может обеспечить более безопасную эксплуатацию нагревателя. Эти нагреватели могут находиться, по существу, в стволе скважины U-образной формы, что снижает количество отверстий на поверхности пласта. Уменьшение количества отверстий может быть желательным для того, чтобы снизить обработки пластов такого типа. Электрическая изоляция нагревателя от пласта снижает электрические потери в пласте и повышает тепловую эффективность нагревателя. Кроме того, электрическая изоляция нагревателя может обеспечить более безопасную эксплуатацию нагревателя. Эти нагреватели могут находиться, по существу, в стволе скважины U-образной формы, что снижает количество отверстий на поверхности пласта. Уменьшение количества отверстий может быть желательным для того, чтобы снизить капитальные затраты и/или снизить воздействие буровых скважин на пласт (например, воздействие на окружающую среду и/или модификации поверхностной-1 014215 топографии). Сущность изобретения Согласно изобретению предлагается способ нагрева подземного углеводородсодержащего пласта с использованием системы, содержащей трубопровод, расположенный в отверстии в пласте, причм трубопровод содержит ферромагнитный материал; электрический проводник, расположенный внутри трубопровода и электрически соединнный с трубопроводом на конце трубопровода или вблизи конца трубопровода, так что электрический проводник и трубопровод соединены последовательно, причм направление электрического тока в электрическом проводнике, по существу, противоположно направлению электрического тока в трубопроводе при подаче электрического тока в систему. Способ включает в себя подачу электрического тока в систему, при этом поток электронов, по существу, ограничен внутри трубопровода, а трубопровод выделяет тепло и нагревает пласт при подаче электрического тока в систему; внешнюю сторону трубопровода электрически изолируют от пласта электрически изолирующим слоем на поверхности трубопровода; трубопровод конфигурируют так, что длина внешней окружности трубопровода больше, чем длина внешней окружности электрического проводника, при этом тепло, выделяющееся в стенке трубопровода, передатся от периферии трубопровода в пласт, благодаря чему трубопровод выделяет большую часть тепловой мощности системы, а толщину стенки трубопровода выбирают равной по меньшей мере одной глубине скин-слоя ферромагнитного материала при 25 С, благодаря чему поток электронов, по существу, ограничивается внутри трубопровода электромагнитным полем, создаваемым при протекании электрического тока в электрическом проводнике, так что на внешней поверхности трубопровода или вблизи не потенциал, по существу, равен нулю при 25 С. В других вариантах осуществления изобретения могут быть добавлены дополнительные признаки к специальным вариантам осуществления настоящего изобретения. Краткое описание чертежей Преимущества настоящего изобретения могут стать очевидными для специалистов в этой области техники с помощью следующего подробного описания со ссылкой на прилагаемые чертежи, на которых: фиг. 1 - иллюстрация стадий нагревания пласта, содержащего углеводороды; фиг. 2 - схематичное представление варианта воплощения части системы термообработки in situ для обработки пласта, содержащего углеводороды; фиг. 3 - вариант воплощения нагревателя, по существу, U-образной формы, который электрически изолирован от пласта; фиг. 4 - вариант воплощения, по существу, горизонтального нагревателя с одним вводом, который электрически изолирован от пласта; фиг. 5 - вариант воплощения, по существу, горизонтального нагревателя с одним вводом, который электрически изолирован от пласта с использованием изолированного проводника в качестве центрального проводника. Хотя это изобретение допускает различные модификации и альтернативные формы, конкретные варианты его воплощения показаны с помощью примеров на чертежах и могут быть подробно описаны в изобретении. Чертежи могут быть выполнены не в масштабе. Однако следует понимать, что эти чертежи и подробное описание изобретения не предназначаются для ограничения изобретения описанными конкретными формами, скорее, наоборот, они предназначены для защиты всех модификаций, эквивалентов и альтернативных форм, подпадающих под замысел и объм настоящего изобретения, которые определены в прилагаемой формуле изобретения. Подробное описание Следующее ниже описание в общем относится к системам и способам для обработки углеводородов в пластах. Такие пласты могут быть обработаны с целью получения углеводородных продуктов, водорода и других продуктов. Термин "углеводороды" обычно означает молекулы, состоящие главным образом из атомов углерода и водорода. Углеводороды также могут содержать другие элементы, такие как галогены, металлические элементы, азот, кислород и/или серу (но не ограничиваются указанным). Углеводороды могут представлять собой кероген, битум, пиробитум, масла, природные минеральные воски и асфальтиты (но не ограничиваются указанным). Углеводороды могут быть расположены внутри (или вблизи) минеральной материнской породы в земле. Материнские породы могут включать в себя (но не ограничиваются указанным) осадочные породы, пески, силицилиты, карбонаты, диатомиты и другие пористые среды."Углеводородные флюиды" представляют собой флюиды, которые включают углеводороды. Углеводородные флюиды могут включать, захватывать или захватываться в неуглеводородные флюиды, такие как водород, азот, монооксид углерода, диоксид углерода, сероводород, вода и аммиак.-2 014215 Термин "пласт" включает в себя один или несколько слов, содержащих углеводороды, один или несколько неуглеводородных слов покрывающих и/или подстилающих пород. Покрывающие и/или подстилающие породы включают в себя один или несколько типов непроницаемых материалов. Например, покрывающие и/или подстилающие породы могут включать горную породу, сланец, аргиллит или влажный/герметичный карбонат. В некоторых вариантах способов in situ термообработки покрывающие и/или подстилающие породы могут включать в себя слой, содержащий углеводороды, или слои, содержащие углеводороды, которые относительно непроницаемы и не подвергаются температурному воздействию в ходе процесса in situ термообработки, который приводит к значительным характеристичным изменениям содержащих углеводороды слов покрывающих и/или подстилающих пород. Например,подстилающая порода может содержать глинистый сланец или аргиллит, однако недопустимо нагревать подстилающую породу до температур пиролиза в ходе процесса in situ термообработки. В некоторых случаях покрывающий и/или подстилающий слои могут обладать некоторой степенью проницаемости. Термин "пластовые флюиды" относится к флюидам, находящимся в пласте, которые могут включать в себя пиролизные флюиды, синтез-газ, подвижные углеводороды и воду (пар). Пластовые флюиды могут включать углеводородные флюиды, а также неуглеводородные флюиды. Термин "подвижный флюид" относится к флюидам в пласте, содержащим углеводороды, которые способны течь под действием термической обработки пласта. Термин "добываемые флюиды" относится к флюидам, удаляемым из пласта. Термин "тепловой источник" представляет собой любую систему для предоставления тепла по меньшей мере к части пласта в основном за счт теплопередачи путм проводимости и/или излучения. Например, тепловой источник может включать электрические нагреватели, такие как изолированный проводник, продолговатый элемент и/или проводник, расположенный в трубе. Кроме того, тепловой источник может включать в себя системы, которые генерируют тепло за счт сжигания топлива снаружи или в пласте. Эти системы могут представлять собой поверхностные горелки, скважинные газовые горелки, рассредоточенные беспламенные камеры сгорания и естественные рассредоточенные камеры сгорания. В некоторых вариантах осуществления тепло, обеспечиваемое или генерируемое в одном или нескольких тепловых источниках, может подаваться из других источников энергии. Эти другие источники энергии могут непосредственно нагревать пласт или энергия может подаваться в передающую среду,которая прямо или косвенно нагревает пласт. Следует понимать, что в одном или нескольких тепловых источниках, которые подают тепло в пласте, могут быть использованы различные источники энергии. Так, например, для данного пласта некоторые тепловые источники могут подавать тепло из нагревателей электрического сопротивления, некоторые тепловые источники могут предоставлять тепло за счт сгорания, и некоторые тепловые источники могут предоставлять тепло из одного или нескольких других источников энергии (например, химические реакции, солнечная энергия, ветровая энергия, биомасса или другие источники возобновляемой энергии). Химические реакции могут включать экзотермические реакции (например, реакции окисления). Кроме того, тепловой источник может включать в себя нагреватель, который предоставляет тепло в ближайшую зону и/или зону, окружающую место нагрева, такую как нагревательная скважина. Термин "нагреватель" означает любую систему или тепловой источник для выработки тепла в скважине или в области вблизи ствола скважины. Нагреватели могут быть (но не ограничиваются указанным) электрическими нагревателями, горелками, камерами сгорания, которые взаимодействуют с материалом внутри или образуются из пласта, и/или их сочетания. Термин "процесс термической обработки in situ" относится к способу нагревания углеводородсодержащего пласта с помощью тепловых источников с целью повышения температуры по меньшей мере в части пласта выше температуры, вызывающей подвижность, или понижение вязкости, или температуры пиролиза, так чтобы внутри пласта образовались подвижные флюиды, флюиды с пониженной вязкостью или пиролизованные флюиды. Термин "изолированный проводник" относится к любому продолговатому материалу, который способен проводить электрический ток и который покрыт, полностью или частично, электрически изолирующим материалом. Продолговатый элемент может быть неизолированным металлическим нагревателем или незащищнным металлическим нагревателем. Термины "неизолированный металл" и "незащищнный металл" относятся к металлам, в которых отсутствует слой электрической изоляции, такой как минеральная изоляция, которая предназначается для обеспечения электрической изоляции металла во всм диапазоне температур эксплуатации продолговатого элемента. Неизолированный металл и незащищнный металл могут охватывать металлы, которые включают в себя ингибитор коррозии, такой как окисленный слой природного происхождения, нанеснный окисленный слой и/или плнка. Неизолированный металл и незащищнный металл включают в себя металлы с полимерной изоляцией или электрической изоляцией другого типа, которая не может сохранить свойства электрического изолятора при типичных температурах эксплуатации продолговатого элемента. Такой материал может быть расположен на металле и может термически разлагаться в ходе применения нагревателя.-3 014215 Термин "ограниченный по температуре нагреватель" обычно относится к нагревателю, который регулирует выходную тепловую мощность (например, уменьшает выходную тепловую мощность) выше заданной температуры без использования внешних средств управления, таких как регуляторы температуры, регуляторы мощности, преобразователи или другие устройства. Ограниченные по температуре нагреватели электрического сопротивления могут потреблять энергию переменного тока (ПМТ) или модулированного (например, "прерывистого") постоянного тока (ПСТ)."Температура Кюри" означает температуру, выше которой ферромагнитный материал теряет все ферромагнитные свойства. Кроме того, что все ферромагнитные свойства исчезают выше температуры Кюри, ферромагнитный материал начинает терять ферромагнитные свойства, когда возрастает электрический ток, проходящий через ферромагнитный материал. Термин "ток, изменяющийся во времени" относится к электрическому току, который вызывает скин-эффект в ферромагнитном проводнике и имеет изменяющееся во времени значение. Ток, изменяющийся во времени, включает как переменный ток (ПМТ), так и модулированный постоянный ток (ПСТ)."Переменный ток (ПМТ)" относится к току, изменяющемуся во времени, направление которого изменяется в основном синусоидально. Переменный ток вызывает скин-эффект потока электричества в ферромагнитном проводнике. Термин "модулированный постоянный ток (ПСТ)" относится к любому току, изменяющемуся во времени несинусоидально, который вызывает скин-эффект потока электричества в ферромагнитном проводнике. Термин "отношение диапазона изменения" для ограниченного по температуре нагревателя означает отношение самого высокого сопротивления переменному току или модулированному ПСТ ниже температуры Кюри, к самому низкому сопротивлению переменному току или модулированному ПСТ выше температуры Кюри при заданном токе. В контексте систем, приборов и методов с пониженной выходной тепловой мощностью термин "автоматически" означает такие системы, приборы и методы, которые выполняются определнным образом без использования средств внешнего управления (например, внешние регуляторы, такие как регуляторы с датчиками температуры и контуром обратной связи, ПИД-регуляторы или прогнозирующие регуляторы). Термин "ствол скважины" относится к отверстию в пласте, полученному путм бурения или внедрения трубопровода внутрь пласта. Ствол скважины может иметь, по существу, круглое поперечное сечение или поперечное сечение другой формы. Применяемые в описании термины "скважина" и "отверстие", когда они относятся к отверстию в пласте, могут быть использованы взаимозаменяемо с термином "ствол скважины". Термин "ствол скважины U-образной формы" относится к стволу скважины, который проходит из первого отверстия в пласте по меньшей мере через часть пласта и выходит через второе отверстие в пласте. В этом контексте ствол скважины может иметь только приблизительно "V-образную" или"U-образную" форму, в том смысле, что "ноги" знака "U" не обязательно параллельны друг другу или перпендикулярны "нижней части" знака "U" для ствола скважины, форма которого считается"U-образной". Термин "пиролиз" представляет собой разрыв химических связей под действием тепла. Например,пиролиз может включать превращение соединения в одно или несколько других веществ только под действием тепла. Для того чтобы вызвать протекание пиролиза, в часть пласта может быть подведено тепло. В некоторых пластах части пласта и/или другие материалы в пласте могут способствовать пиролизу за счт каталитической активности. Термины "флюиды пиролиза" или "продукты пиролиза" относятся к флюидам, полученным главным образом во время пиролиза углеводородов. Флюиды, полученные в процессе пиролиза, могут смешиваться с другими флюидами в пласте. Эти смеси можно рассматривать как флюиды пиролиза или продукты пиролиза. Используемый здесь термин "зона пиролиза" относится к объму пласта (например, относительно проницаемый пласт, такой как пласт битуминозного песка), в котором протекает взаимодействие с образованием флюида пиролиза. Углеводороды в пластах могут быть обработаны различными способами с целью получения множества различных продуктов. В определнных вариантах осуществления углеводороды в пластах обрабатывают поэтапно. На фиг. 1 представлены этапы нагревания пласта, который содержит углеводороды. Кроме того, на фиг. 1 показана зависимость выхода ("Y") в баррелях (1 баррель = 159 л) нефтяного эквивалента на 1 т (по ординате) пластовых флюидов от температуры ("Т") нагретого пласта в градусах Цельсия (по абсциссе). В ходе первого этапа нагревания происходят десорбция метана и испарение воды. Нагревание пласта в ходе первого этапа может быть проведено, по возможности, быстро. Например, при первоначальном нагревании углеводородсодержащего пласта углеводороды в пласте десорбируют поглощнный метан. Этот десорбированный метан можно добывать из пласта. При дальнейшем нагревании пласта, содержащего углеводороды, происходит испарение воды из пласта. В некоторых углеводородсодержащих-4 014215 пластах вода может занимать между 10 и 50% от объма пор в пласте. В других пластах вода занимает большую или меньшую часть объма пор. Обычно вода испаряется из пласта при температуре между 160 и 285 С, при абсолютном давлении от 600 до 7000 кПа. В некоторых вариантах испарившаяся вода приводит к изменениям смачиваемости в пласте и/или к повышению давления в пласте. Изменения смачиваемости и/или повышенное давление могут повлиять на процессы пиролиза или другие взаимодействия в пласте. В определнных вариантах воплощения испарившаяся вода выводится из пласта. В других вариантах испарившаяся вода используется для паровой экстракции и/или дистилляции внутри пласта или вне пласта. Удаление воды из пласта и увеличение объма пор в пласте дают увеличение пространства для хранения углеводородов в объме пор. В определнных вариантах воплощения после первого этапа нагревания часть пласта нагревается дополнительно для того, чтобы температура в этой части пласта достигла (по меньшей мере) начальной температуры пиролиза (такой как температура на нижнем краю диапазона температур, показанного как этап 2). Углеводороды в пласте могут подвергаться пиролизу на всем этапе 2. Диапазон температур пиролиза изменяется в зависимости от состава углеводородов в пласте. Диапазон температур пиролиза может включать температуры между 250 и 900 С. Диапазон температур пиролиза с целью производства желаемых продуктов может составлять только часть от общего диапазона температур пиролиза. В некоторых вариантах изобретения диапазон температур пиролиза для производства желаемых продуктов может включать температуры между 250 и 400 С или температуры между 270 и 350 С. Если температура углеводородов в пласте медленно повышается во всм температурном диапазоне от 250 до 400 С, то образование продуктов пиролиза может практически завершиться при достижении температуры 400 С. Скорость подъма средней температуры углеводородов может составлять меньше чем 5 С в сутки,меньше чем 2 С в сутки, меньше чем 1 С в сутки или меньше чем 0,5 С в сутки в диапазоне температур пиролиза для получения желательных продуктов. При нагревании углеводородсодержащего пласта с помощью множества тепловых источников могут установиться термические градиенты вокруг тепловых источников, что приведет к медленному повышению температуры углеводородов в пласте во всм диапазоне температур пиролиза. Скорость повышения температуры во всм диапазоне температур пиролиза для получения желательных продуктов может повлиять на количество и качество флюидов пласта, добываемых из углеводородсодержащего пласта. Медленное повышение температуры во всм диапазоне температур пиролиза для получения желательных продуктов может предотвратить активацию длинноцепочечных молекул в пласте. Медленное повышение температур во всм диапазоне температур пиролиза для желательных продуктов может ограничить взаимодействие между активированными углеводородами, при котором образуются нежелательные продукты. Медленное повышение температуры пласта во всм диапазоне температур пиролиза для образования желательных продуктов может обеспечить получение из пласта высококачественных углеводородов с пониженным удельным весом (с высоким градусом API). Медленное повышение температуры пласта во всм диапазоне температур пиролиза для получения желательных продуктов может обеспечить извлечение большого количества углеводородов, находящихся в пласте в виде углеводородного продукта. В некоторых вариантах осуществления in situ термообработки часть пласта нагревается до желательной температуры вместо медленного повышения температуры в некотором температурном диапазоне. В некоторых вариантах исполнения желательная температура составляет 300, 325 или 350 С. В качестве желательной температуры могут быть выбраны другие температуры. Суперпозиция тепла от нагревателей обеспечивает относительно быстрое и эффективное установление желательной температуры в пласте. Ввод энергии в пласт из тепловых источников можно отрегулировать таким образом, чтобы поддерживать в пласте желательную температуру. В нагретой части пласта поддерживается практически желательная температура, пока интенсивность пиролиза не уменьшится настолько, что производство желательных флюидов из пласта станет неэкономичным. Части пласта, которые подвергаются пиролизу,могут включать в себя области, нагретые до диапазона температур пиролиза за счт теплопередачи только из одного теплового источника. В определнных вариантах воплощения флюиды пласта, в том числе флюиды пиролиза, добываются из пласта. По мере повышения температуры пласта количество конденсируемых углеводородов в добываемом пластовом флюиде может снижаться. При высоких температурах в пласте могут образоваться главным образом метан и/или водород. Если пласт нагревается во всм температурном диапазоне пиролиза, в пласте может образоваться лишь небольшое количество водорода при приближении к предельной температуре пиролиза. После исчерпания большей части доступного водорода обычно в пласте будет получаться минимальное количество флюидных продуктов. После пиролиза углеводородов в пласте ещ может присутствовать большое количество углерода и некоторое количество водорода. Значительную часть углерода, оставшегося в пласте, можно извлечь из пласта в виде синтез-газа. Образование синтез-газа может иметь место в ходе 3-го этапа нагревания, изображнного на фиг. 1. Этап 3 может включать в себя нагревание пласта, содержащего углеводороды, до температуры, которая достаточна для обеспечения образования синтез-газа. Например, синтез-газ может образоваться в температурном диапазоне приблизительно от 400 до 1200 С, приблизительно от 500 до-5 014215 1100 С или приблизительно от 550 до 1000 С. Когда в пласт вводится флюид, вырабатывающий синтезгаз, температура нагретой части пласта определяет состав синтез-газа, образовавшегося в пласте. Образовавшийся синтез-газ можно выводить из пласта через одну или несколько эксплуатационных скважин. Общее энергосодержание флюидов, добытых из углеводородсодержащего пласта, может оставаться относительно постоянным в ходе пиролиза и генерации синтез-газа. Во время пиролиза при относительно низких температурах пласта значительная часть добытого флюида может представлять собой конденсирующиеся углеводороды, которые имеют высокое энергосодержание. Однако при повышенной температуре пиролиза пластовый флюид может содержать меньшее количество конденсирующихся углеводородов. Из пласта можно добывать больше неконденсирующихся пластовых флюидов. Энергосодержание на единицу объма добытых флюидов может немного снижаться при образовании преимущественно неконденсирующихся пластовых флюидов. В ходе образования синтез-газа энергосодержание на единицу объма добытого синтез-газа существенно снижается по сравнению с энергосодержанием пиролизованного флюида. Однако во многих случаях объм образовавшегося синтез-газа будет существенно возрастать, что компенсирует снижение энергосодержания. На фиг. 2 изображен схематический вид варианта исполнения части системы термообработки in situ для обработки углеводородсодержащего пласта. Эта система термообработки in situ может включать барьерные скважины 200. Барьерные скважины применяются для создания барьера вокруг обрабатываемой площади. Этот барьер предотвращает вход потока флюида и/или выход из обрабатываемой площади. Барьерные скважины включают (но не ограничиваются указанным) водопонижающие скважины, вакуумные скважины, перехватывающие скважины, нагнетательные скважины, цементированные скважины,замораживающие скважины или их сочетания. В некоторых вариантах исполнения барьерные скважины 200 представляют собой водопонижающие скважины. Эти водопонижающие скважины могут удалять жидкую воду и/или предотвращать поступление жидкой воды в часть пласта, которая будет нагреваться,или в нагретый пласт. В варианте, изображнном на фиг. 2, показаны барьерные скважины 200, выступающие только вдоль одной стороны тепловых источников 202, однако обычно барьерные скважины окружают все используемые тепловые источники 202, или которые будут использованы для нагревания обрабатываемой площади пласта. Тепловые источники 202 расположены по меньшей мере в части пласта. Тепловые источники 202 могут включать в себя нагреватели, такие как изолированные проводники, нагреватели типа "проводник в трубе", поверхностные горелки, беспламенные рассредоточенные камеры сгорания и/или естественно рассредоточенные камеры сгорания. Кроме того, тепловые источники 202 могут включать другие типы нагревателей. Тепловые источники 202 обеспечивают тепло по меньшей мере для части пласта для того,чтобы нагреть углеводороды в пласте. Энергию к тепловым источникам 202 можно подводить с помощью линий питания 204. Линии питания 204 могут отличаться по структуре в зависимости от типа теплового источника или тепловых источников, используемых для нагревания пласта. Линии питания 204 для нагревателей могут передавать электричество для электрических нагревателей, могут транспортировать топливо для камер сгорания или могут транспортировать теплообменный флюид, который циркулирует в пласте. Эксплуатационные скважины 206 используются для удаления пластового флюида из пласта. В некоторых вариантах изобретения эксплуатационная скважина 206 включает тепловой источник. Этот тепловой источник в эксплуатационной скважине может нагревать одну или нескольких частей пласта в эксплуатационной скважине или вблизи не. В некоторых вариантах осуществления способа термообработки in situ количество тепла, поданное в пласт из эксплуатационной скважины на 1 м эксплуатационной скважины, меньше, чем количество тепла, поданное в пласт из теплового источника, который нагревает пласт, на 1 м теплового источника. Тепло, поданное в пласт из эксплуатационной скважины, может повысить проницаемость пласта близлежащей к эксплуатационной скважине за счт испарения и удаления жидкофазного флюида вблизи эксплуатационной скважины и/или путм увеличения проницаемости пласта вблизи эксплуатационной скважины, за счт образования макро- и/или микротрещин. Пластовый флюид, который добывают из эксплуатационных скважин 206, может транспортироваться по трубопроводу коллектора 208 к установкам 210 для переработки. Пластовые флюиды также можно отбирать из тепловых источников 202. Например, флюид можно добывать из тепловых источников 202 для управления давлением в пласте вблизи тепловых источников. Флюид, добытый из тепловых источников 202, может транспортироваться по трубам или трубопроводу в трубопровод коллектора 208 или образовавшийся флюид может транспортироваться по трубам или трубопроводу непосредственно в установки 210 для переработки. Установки 210 для переработки могут включать в себя блоки разделения, блоки взаимодействия, блоки облагораживания, топливные элементы, турбины, контейнеры для хранения и/или другие системы и блоки для переработки образовавшихся пластовых флюидов. В установках 210 для переработки можно получать моторное топливо по меньшей мере из части углеводородов, добытых из пласта. В некоторых вариантах осуществления это моторное топливо может представлять собой реактивное топливо, такое как JP-8.-6 014215 Ограниченные по температуре нагреватели могут находиться в конфигурации и/или могут включать в себя материалы, которые обеспечивают автоматическое ограничение свойств нагревателя при определнной температуре. В определнных вариантах воплощения в ограниченных по температуре нагревателях используются ферромагнитные материалы. Ферромагнитный материал может автоматически ограничивать температуру при температуре Кюри материала (или вблизи не), обеспечивая снижение количества тепла при температуре Кюри (или вблизи не), когда по материалу проходит переменный ток. В определнных вариантах воплощения ферромагнитный материал автоматически ограничивает температуру ограниченного по температуре нагревателя при заданной температуре, которая приблизительно является температурой Кюри материала. В определнных вариантах воплощения заданная температура отличается от температуры Кюри на 35, 25, 20 или на 10 С. В определнных вариантах воплощения ферромагнитные материалы сочетаются с другими материалами (например, материалами с высокой проводимостью, материалами с высокой прочностью, коррозионно-стойкими материалами или их сочетаниями) для обеспечения различных электрических и/или механических свойств. Некоторые части ограниченного по температуре нагревателя могут иметь пониженное сопротивление (что обусловлено другой геометрией и/или использованием других ферромагнитных и/или неферромагнитных материалов), чем другие части ограниченного по температуре нагревателя. Наличие деталей ограниченного по температуре нагревателя из различных материалов и/или различных размеров обеспечивает подгонку желательной выходной тепловой мощности из каждой части нагревателя. Ограниченные по температуре нагреватели могут обладать большей наджностью, чем другие нагреватели. Ограниченные по температуре нагреватели могут быть менее подвержены разрушению или реже выходят из строя из-за участков местного перегрева в пласте. В некоторых вариантах исполнения ограниченные по температуре нагреватели обеспечивают практически равномерный нагрев пласта. В некоторых вариантах исполнения ограниченные по температуре нагреватели способны нагревать пласт более эффективно за счт работы при повышенном среднем значении выходной тепловой мощности вдоль всей длины нагревателя. Ограниченный по температуре нагреватель работает при повышенном среднем значении выходной тепловой мощности вдоль всей длины нагревателя, поскольку подаваемую в нагреватель мощность не нужно снижать по всему нагревателю, как в случае обычных нагревателей постоянной мощности (в ваттах), если температура вдоль любой области нагревателя превышает или почти превышает максимальную рабочую температуру нагревателя. Выходная тепловая мощность из части ограниченного по температуре нагревателя, температура которой приближается к температуре Кюри,автоматически снижается без контролируемой коррекции переменного тока, подаваемого на нагреватель. Выходная тепловая мощность автоматически снижается благодаря изменениям электрических свойств(например, электрического сопротивления) частей ограниченного по температуре нагревателя. Таким образом, с помощью ограниченного по температуре нагревателя податся большая мощность во время большей части процесса нагрева. В одном варианте система, включающая ограниченные по температуре нагреватели, сначала обеспечивает первую выходную тепловую мощность и затем обеспечивает пониженное количество тепла(вторая выходная тепловая мощность) при температуре вблизи или выше температуры Кюри электрорезистивной части нагревателя, когда через ограниченный по температуре нагреватель пропускают переменный ток. Первая выходная тепловая мощность представляет собой тепловую мощность при температуре, ниже которой начинается автоматическое ограничение ограниченного по температуре нагревателя. В некоторых вариантах осуществления первая выходная тепловая мощность представляет собой тепловую мощность при температуре, которая на 50, 75, 100 или на 125 С ниже температуры Кюри ферромагнитного материала в ограниченном по температуре нагревателе. Через ограниченный по температуре нагреватель можно пропускать переменный во времени ток(переменный ток или модулированный постоянный ток), подаваемый в устье скважины. Устье скважины может включать в себя источник питания и другие компоненты (например, модуляционные компоненты,трансформаторы и/или конденсаторы), применяемые для подачи энергии в ограниченный по температуре нагреватель. Ограниченный по температуре нагреватель может быть одним из многих нагревателей,используемых для нагревания части пласта. В определнных вариантах воплощения ограниченный по температуре нагреватель включает в себя проводник, который работает как нагреватель со скин-эффектом или с близким эффектом, когда через проводник проходит изменяемый во времени ток. Скин-эффект ограничивает глубину проникновения тока внутрь проводника. Для ферромагнитных материалов скин-эффект в основном определяется магнитной проницаемостью проводника. Обычно величина относительной магнитной проницаемости ферромагнитных материалов находится между 10 и 1000 (например, величина относительной магнитной проницаемости ферромагнитных материалов обычно составляет по меньшей мере 10 и может быть равной по меньшей мере 50, 100, 500, 1000 или более). Когда температура ферромагнитного материала поднимается выше температуры Кюри и/или когда возрастает проходящий электрический ток, магнитная проницаемость ферромагнитного материала значительно снижается, и быстро распространяется область скин-эффекта (например, скин-эффект распространяется обратно пропорционально квадратному корню из магнитной проницаемости). Снижение магнитной проницаемости приводит к уменьшению сопротив-7 014215 ления переменному току или модулированному ПСТ для проводника при температуре вблизи или выше температуры Кюри и/или при увеличении электрического тока через проводник. Когда ограниченный по температуре нагреватель запитывается от источника тока, по существу постоянной величины, части нагревателя, имеющие температуру, близкую к температуре Кюри, равную или выше температуры Кюри,могут иметь пониженное тепловыделение. Части ограниченного по температуре нагревателя, температура которых не равна или не приближается к температуре Кюри, могут нагреваться в основном за счт скин-эффекта, что обеспечивает высокое тепловыделение нагревателя вследствие повышенной резистивной нагрузки. Преимущество применения ограниченного по температуре нагревателя для нагрева углеводородов в пласте заключается в том, что выбирают проводник, который имеет температуру Кюри в желательном диапазоне рабочих температур. Эксплуатация внутри желательного диапазона рабочих температур обеспечивает существенный тепловой поток внутрь пласта, в то время как температура ограниченного по температуре нагревателя и другого оборудования поддерживается ниже заданной предельной температуры. Заданной предельной температурой является такая температура, при которой существенно ухудшаются такие свойства, как коррозия, текучесть и/или деформация. Температурный предел свойств ограниченного по температуре нагревателя предотвращает перегрев или перегорание нагревателя вблизи "горячих пятен" пласта с низкой теплопроводностью. В некоторых вариантах изобретения ограниченный по температуре нагреватель способен снижать или регулировать выходную тепловую мощность и/или выдерживать нагревание при температурах выше 25, 37, 100, 250, 500, 700, 800, 900 С или выше, вплоть до 1131 С, в зависимости от материалов, использованных в нагревателе. Ограниченный по температуре нагреватель обеспечивает больший тепловой поток внутрь пласта,чем нагреватели с постоянной мощностью, поскольку энергия, вводимая в ограниченный по температуре нагреватель, не должна ограничиваться для того, чтобы соответствовать областям с низкой теплопроводностью вблизи нагревателя. Например, в месторождении нефтяного сланца Green River существует различие по меньшей мере в 3 раза по теплопроводности наименее богатых слов нефтяного сланца и наиболее богатых слов нефтяного сланца. При нагревании такой пласта гораздо больше тепла передатся в пласт с ограниченным по температуре нагревателем, чем с традиционным нагревателем, который ограничивается температурой в слоях с низкой теплопроводностью. Выходная тепловая мощность по всей длине традиционного нагревателя должна соответствовать слоям с низкой теплопроводностью для того,чтобы нагреватель не перегревался и не перегорал в слоях с низкой теплопроводностью. Выходная тепловая мощность вблизи слов с низкой теплопроводностью, которые находятся при высокой температуре, будет снижаться в ограниченном по температуре нагревателе, однако остальные части ограниченного по температуре нагревателя, которые не находятся при высокой температуре, все ещ будут обеспечивать высокую выходную тепловую мощность. Поскольку нагреватели для нагревания углеводородных пластов обычно имеют большую длину (например, по меньшей мере 10, 100, 300 м, 1 км или более,вплоть до 10 км), большая часть длины ограниченного по температуре нагревателя может эксплуатироваться при температуре ниже температуры Кюри, тогда как только небольшие участки ограниченного по температуре нагревателя находятся при температуре Кюри или вблизи не. Применение ограниченных по температуре нагревателей обеспечивает эффективную передачу тепла в пласт. Эффективная передача тепла обеспечивает уменьшение времени, которое необходимо для нагревания пласта до желательной температуры. Например, в месторождении нефтяного сланца GreenRiver обычно для пиролиза требуется нагревание от 9,5 до 10 лет при использовании нагревательной скважины с традиционными нагревателями постоянной мощности, размещнными на расстоянии 12 м. При таком же размещении нагревателей, ограниченных по температуре, может быть обеспечена в среднем повышенная выходная тепловая мощность, в то же время температура нагревательного оборудования поддерживается ниже заданной предельной температуры для оборудования. Пиролиз в пласте может происходить за меньшее время с повышенной средней выходной тепловой мощностью, обеспечиваемой ограниченными по температуре нагревателями, по сравнению с пониженной средней выходной тепловой мощностью, обеспечиваемой нагревателями с постоянной мощностью. Например, в месторождении нефтяного сланца Green River пиролиз может происходить за 5 лет при использовании нагревательных скважин (на расстоянии 12 м) с ограниченными по температуре нагревателями. Ограниченные по температуре нагреватели нейтрализуют эффект горячих пятен, обусловленный неточным расположением скважин или бурением, когда нагревательные скважины находятся слишком близко друг к другу. В определнных вариантах воплощения ограниченные по температуре нагреватели позволяют обеспечить повышенную выходную мощность во времени для нагревательных скважин, которые расположены слишком далеко друг от друга, или ограниченную выходную мощность для нагревательных скважин, которые расположены слишком близко друг к другу. Кроме того, ограниченные по температуре нагреватели обеспечивают большую мощность в областях вблизи покрывающей и подстилающей породы для того, чтобы компенсировать потери тепла в этих областях.-8 014215 Ограниченные по температуре нагреватели могут быть выгодно использованы во многих типах пластов. Например, в пластах битуминозных песков или относительно проницаемых пластов, содержащих тяжелые углеводороды, ограниченные по температуре нагреватели могут быть использованы для обеспечения регулируемого низкотемпературного выхода мощности для снижения вязкости флюидов,придания подвижности флюидам и/или для усиления радиального потока флюидов в стволе скважины(или вблизи ствола) или в пласте. Ограниченные по температуре нагреватели могут быть использованы для предотвращения избыточного образования кокса из-за перегрева области пласта вблизи ствола скважины. Применение ограниченных по температуре нагревателей в некоторых вариантах исполнения исключает или снижает потребность в дорогостоящих схемах регулирования температуры. Например, использование ограниченных по температуре нагревателей исключает или снижает потребность в осуществлении записи показаний температуры и/или потребность в использовании термоэлементов, фиксированных на нагревателях, для наблюдения за возможным перегревом в горячих местах. В некоторых вариантах осуществления ограниченные по температуре нагреватели являются устойчивыми к деформации. Локализованное перемещение материала в стволе скважины может приводить к поперечным напряжениям в нагревателе, форма которого может деформироваться. Горячие места могут быть расположены по длине нагревателя в местах, где ствол скважины приближается или перекрывает нагреватель и где традиционный нагреватель перегревается и существует вероятность перегорания нагревателя. Эти места перегрева могут снижать предел текучести и предел ползучести металла, что приводит к раздавливанию или деформации нагревателя. Ограниченным по температуре нагревателям может быть придана S-образная форма (или другие нелинейные формы), которые воспринимают деформацию ограниченного по температуре нагревателя, предотвращая разрушение нагревателя. В некоторых вариантах исполнения ограниченные по температуре нагреватели являются более экономичными в производстве или изготовлении, чем традиционные нагреватели. Типичные ферромагнитные материалы включают в себя железо, углеродистую сталь или ферритную нержавеющую сталь. Такие материалы являются недорогими по сравнению с нагревательными сплавами на основе никеля (такие как нихром, Kanthal (фирма Bulten-Kanthal АВ, Швеция) и/или LOHM (Driver-Harris Company, Harrison,New Jersey, США, которые обычно используются в нагревателях типа изолированного проводника (минеральный изолированный кабель). В одном варианте ограниченного по температуре нагревателя этот нагреватель производится в виде непрерывного по длине как нагреватель с изолированным проводником для того, чтобы снизить затраты и улучшить наджность. Ферромагнитный сплав или ферромагнитные сплавы, применяемые в ограниченном по температуре нагревателе, определяют температуру Кюри нагревателя. Данные о температуре Кюри для различных металлов приведены в справочнике "American Institute of Physics Handbook," 2-е изд., McGraw-Hill,p. 5-170 - 5-176. Ферромагнитные проводники могут включать в себя один или несколько ферромагнитных элементов (железо, кобальт и никель) и/или сплавы этих элементов. В некоторых вариантах исполнения ферромагнитные проводники включают железохромовые (Fe-Cr) сплавы, которые содержат вольфрам (W) (например, НСМ 12 А и SAVE12 (фирма Sumitomo Metals Co., Япония) и/или железные сплавы, которые содержат хром (например, Fe-Cr сплавы, Fe-Cr-W сплавы, Fe-Cr-V (ванадий) сплавы,Fe-Cr-Nb (ниобий) сплавы. Из этих трех основных ферромагнитных элементов железо имеет температуру Кюри приблизительно 770 С; кобальт (Со) имеет температуру Кюри около 1131 С и никель имеет температуру Кюри вблизи 358 С. Железокобальтовый сплав имеет температуру Кюри выше, чем температура Кюри для железа. Например, железокобальтовый сплав, содержащий 2 мас.% кобальта, имеет температуру Кюри 800 С; железокобальтовый сплав с 12 мас.% кобальта имеет температуру Кюри 900 С и железокобальтовый сплав с 20 мас.% кобальта имеет температуру Кюри 950 С. Железоникелевый сплав имеет температуру Кюри меньше, чем температура Кюри для железа. Например, железоникелевый сплав, содержащий 20 мас.% никеля, имеет температуру Кюри 720 С и железоникелевый сплав с 60 мас.% никеля имеет температуру Кюри 560 С. Некоторые неферромагнитные элементы, применяемые в сплавах, повышают температуру Кюри железа. Например, железованадиевый сплав, содержащий 5,9 мас.% ванадия, имеет температуру Кюри приблизительно 815 С. Другие неферромагнитные элементы (например, углерод, алюминий, медь, кремний и/или хром) могут образовывать сплав с железом или другими ферромагнитными материалами для снижения температуры Кюри. Неферромагнитные материалы, которые повышают температуру Кюри,могут сочетаться с неферромагнитными материалами, которые понижают температуру Кюри, и образовывать сплав с железом или другими ферромагнитными материалами с целью получения материала с желательной температурой Кюри и другими желательными физическими и/или химическими свойствами. В некоторых вариантах исполнения материал, имеющий температуру Кюри, является ферритом, таким как NiFe2O4. В других вариантах материал, имеющий температуру Кюри, является бинарным соединением, таким как FeNi3 или Fe3Al.-9 014215 В некоторых вариантах исполнения ограниченные по температуре нагреватели могут содержать более одного ферромагнитного материала. Такие варианты осуществления входят в объм защиты описанных вариантов настоящего изобретения, если описанные здесь условия применимы по меньшей мере для одного из ферромагнитных материалов в ограниченном по температуре нагревателе. Обычно ферромагнитные свойства ослабляются по мере приближения к температуре Кюри материала. Таким образом, автоматически ограничивающаяся температура может быть несколько ниже действительной температуры Кюри ферромагнитного проводника. Глубина скин-эффекта обычно определяется как эффективная глубина проникновения переменного тока в проводящий материал. В общем плотность тока убывает экспоненциально с расстоянием от внешней поверхности в центр вдоль радиуса проводника. Глубина, на которой плотность тока приблизительно составляет 1/e от поверхностной плотности тока, называется глубиной скин-эффекта. Глубина скин-эффекта при протекании тока в углеродистой стали (1% С) составляет 0,132 см при комнатной температуре и увеличивается до 0,445 см при 720 С. В диапазоне температур 720-730 С глубина скин-эффекта резко увеличивается до 2,5 см и более. Таким образом, вариант ограниченного по температуре нагревателя при использовании углеродистой стали(1% С) становится автоматически ограниченным между 650 и 730 С. Для большинства металлов удельное сопротивлениеувеличивается с ростом температуры. Относительная магнитная проницаемость обычно изменяется при изменении температуры и тока. Могут быть использованы дополнительные уравнения, чтобы оценить изменение магнитной проницаемостии/или глубины скин-эффекта в зависимости от температуры и/или тока. Зависимостьот тока обусловлена зависимостьюот магнитного поля. Материалы, применяемые в ограниченном по температуре нагревателе, могут быть выбраны таким образом, чтобы обеспечить желательное отношение диапазона изменения. Для ограниченных по температуре нагревателей могут быть выбраны отношения диапазона изменения, равные по меньшей мере 1,1:1, 2:1, 3:1, 4:1, 5:1,10:1, 30:1 или 50:1. Также могут быть использованы более высокие отношения диапазона изменений. Выбранное отношение диапазона изменения зависит от ряда факторов, в том числе (но не ограничиваются указанным) от типа пласта, в котором расположен ограниченный по температуре нагреватель (например, может быть использовано повышенное отношение диапазона изменения для пласта нефтеносного сланца с большими изменениями теплопроводности между богатыми и обедненными слоями нефтеносного сланца) и/или от температурного предела материалов, применяемых в стволе скважины (например, температурные пределы материалов нагревателя). В некоторых вариантах исполнения отношение диапазона изменения увеличивается за счт взаимодействия с дополнительной медью или другим хорошим электрическим проводником ферромагнитного материала (например, добавление меди для снижения сопротивления выше температуры Кюри). Ограниченный по температуре нагреватель может обеспечивать минимальную выходную тепловую мощность (выходную мощность) ниже температуры Кюри нагревателя. В определнных вариантах воплощения минимальная выходная тепловая мощность составляет по меньшей мере 600, 700, 800 Вт/м или более, вплоть до 2000 Вт/м. Ограниченный по температуре нагреватель снижает величину выходной тепловой мощности, обеспечиваемой секцией нагревателя, когда температура этой секции нагревателя приближается к температуре Кюри или превышает ее. Уменьшенное количество тепла может быть, по существу, меньше, чем выходная тепловая мощность ниже температуры Кюри. В некоторых вариантах исполнения это уменьшенное количество тепла составляет не более 400, 200, 100 Вт/м или может приближаться к нулю. В некоторых вариантах исполнения регулируют частоту переменного тока, чтобы изменить глубину скин-эффекта ферромагнитного материала. Например, глубина скин-эффекта для углеродистой стали(1% С) при комнатной температуре составляет 0,132 см при 60 Гц, 0,0762 см при 180 Гц и 0,046 см при 440 Гц. Поскольку обычно диаметр нагревателя более чем в 2 раза превышает глубину скин-эффекта,при использовании повышенной частоты (и, таким образом, нагревателя меньшего диаметра) снижается стоимость нагревателя. Для заданной геометрии повышенная частота приводит к большему отношению диапазона изменения. Отношение диапазона изменения при повышенной частоте рассчитывают путм умножения отношения диапазона изменения при пониженной частоте на квадратный корень из отношения повышенной частоты к пониженной частоте. В некоторых вариантах исполнения используется частота между 100 и 1000 Гц, между 140 и 200 Гц или между 400 и 600 Гц (например, 180, 540 или 720 Гц). В некоторых вариантах исполнения могут быть использованы высокие частоты. Эти частоты могут быть более чем 1000 Гц. В определнных вариантах воплощения для подачи электрической мощности в ограниченный по температуре нагреватель может быть использован модулированный ПСТ (например, прерывистый ПСТ,волнообразный модулированный ПСТ или циклический ПСТ). В блоке электропитания ПСТ могут сочетаться модулятор ПСТ или прерыватель ПСТ, чтобы обеспечить на выходе модулированный постоянный ток. В некоторых вариантах исполнения блок электропитания ПСТ может включать в себя средства модулирования ПСТ. Одним примером модулятора ПСТ является система преобразования ПСТ-в-ПСТ. Системы преобразования ПСТ-в-ПСТ широко известны из уровня техники. Обычно постоянный ток мо- 10014215 дулируется или прерывается, давая желательный волнообразный ПСТ. Форма волны для модулированного ПСТ включает (но не ограничивается указанным) прямоугольную форму, синусоидальную, деформированную синусоидальную, деформированную прямоугольную форму, треугольную и другие регулярные или нерегулярные волновые формы. Обычно модулированный волнообразный ПСТ определяется частотой модуляции ПСТ. Таким образом, можно выбрать модулированный волнообразный ПСТ таким образом, чтобы обеспечить желательную частоту модулированного ПСТ. Форма и/или скорость модуляции (такая как скорость прерывания) модулированного волнообразного ПСТ могут варьироваться с целью изменения частоты модулированного ПСТ. Постоянный ток может быть модулирован с частотой, которая выше частоты доступного переменного тока. Например, можно обеспечить ПСТ, модулированный частотой по меньшей мере 1000 Гц. Увеличение частоты подаваемого тока до больших значений выгодно повышает отношение диапазона изменения ограниченного по температуре нагревателя. В определнных вариантах воплощения форма волны модулированного ПСТ регулируется или изменяется с целью варьирования частоты модулированного ПСТ. Модулятор ПСТ может обеспечивать регулирование или изменение колебаний модулированного ПСТ в любой момент во время использования ограниченного по температуре нагревателя и при высоких значениях тока или электрического напряжения. Таким образом, модулированный ПСТ, предназначенный для ограниченного по температуре нагревателя, не ограничивается единственной частотой или даже небольшим набором частот. Обычно выбор формы волны с использованием модулятора ПСТ обеспечивает широкий диапазон частот модулированного ПСТ, а также дискретное регулирование частоты модулированного ПСТ. Таким образом, частоту модулированного ПСТ легче установить на конкретное значение, в то время как частота переменного тока обычно ограничивается частотами, кратными значениям сетевой частоты. Дискретное регулирование частоты модулированного ПСТ обеспечивает лучшее избирательное управление по величине отношения диапазона изменения ограниченного по температуре нагревателя. Возможность избирательного управления отношением диапазона изменения ограниченного по температуре нагревателя обеспечивает расширение диапазона материалов, которые могут быть использованы при проектировании и конструировании ограниченного по температуре нагревателя. В некоторых вариантах исполнения частота модулированного ПСТ или частота переменного тока регулируется для того, чтобы компенсировать изменения свойств (например, подземных условий, таких как температура или давление) во время использования ограниченного по температуре нагревателя. Частота модулированного ПСТ или частота переменного тока, предназначенная для ограниченного по температуре нагревателя, варьируется на основе оценки условий в скважине. Например, когда температура ограниченного по температуре нагревателя в стволе скважины возрастает, может быть выгодным увеличение частоты тока, который податся в нагреватель, таким образом, увеличивается отношение диапазона изменения нагревателя. В варианте воплощения изобретения оценивается температура ограниченного по температуре нагревателя в стволе скважины. В определнных вариантах воплощения частота модулированного ПСТ или частота переменного тока изменяется с целью регулирования отношения диапазона изменения для ограниченного по температуре нагревателя. Отношение диапазона изменения можно отрегулировать для того, чтобы компенсировать возникновение горячих пятен по длине ограниченного по температуре нагревателя. Например, отношение диапазона изменения увеличивается, поскольку ограниченный по температуре нагреватель становится слишком горячим в определнных местах. В некоторых вариантах исполнения частоту модулированного ПСТ или частоту переменного тока изменяют с целью регулирования отношения диапазона изменения без оценки подземных условий. В справочнике Metals Handbook, vol. 8, p. 291 (American Society of Materials (ASM приведен график зависимости температуры Кюри железохромовых сплавов от количества хрома в сплавах. В некоторых вариантах исполнения отдельный опорный пруток или трубка (изготовлены из нержавеющей стали 347 Н) соединяются с ограниченным по температуре нагревателем, изготовленным из железохромового сплава, чтобы обеспечить прочность и/или сопротивление ползучести. В некоторых вариантах исполнения материал опоры и/или ферромагнитный материал могут быть выбраны таким образом, чтобы обеспечить в течение 100000 ч прочность на ползучесть-разрыв, по меньшей мере равную 20,7 МПа при 650 С. В некоторых вариантах исполнения прочность на ползучесть-разрыв в течение 100000 ч составляет по меньшей мере 13,8 МПа при 650 С или по меньшей мере 6,9 МПа при 650 С. Например, сталь 347 Н имеет подходящую прочность на ползучесть-разрыв при 650 С или выше. В некоторых вариантах исполнения прочность на ползучесть-разрыв в течение 100000 ч находится в диапазоне от 6,9 до 41,3 МПа или выше для более длинных нагревателей и/или при повышенном напряжении в земле или повышенном давлении флюида. В определнных вариантах воплощения ограниченные по температуре нагревательные элементы используются главным образом в горизонтальных секциях U-образных стволов скважин. В основномU-образные стволы скважин могут быть использованы в пластах битуминозных песков, пластах нефтеносных сланцев или других пластах с относительно тонкими углеводородными слоями. Пласты битуминозных песков или тонких нефтеносных сланцев могут иметь тонкие неглубокие слои, которые болееU-образных стволах скважин. В основном U-образные стволы скважин могут быть использованы для обработки пластов с мощными углеводородными слоями. В некоторых вариантах осуществленияU-образные стволы скважин в основном используются с целью доступа к богатым слоям в мощном углеводородном пласте. Нагреватели, по существу, в U-образных стволах скважин могут иметь большую длину по сравнению с нагревателями в вертикальных стволах скважин, поскольку горизонтальные нагревательные секции не создают проблем ползучести или подвесного напряжения, возникающих для вертикальных нагревательных элементов. По существу, U-образные стволы скважин могут использовать естественные уплотнения в пласте и/или в углеводородном слое ограниченной толщины. Например, ствол скважины может быть расположен выше или ниже естественных уплотнений в пласте без кернения большого числа отверстий в естественных уплотнениях, что было бы необходимо для вертикально ориентированных стволов скважин. При использовании, по существу, U-образных стволов скважин вместо вертикальных стволов скважин также можно уменьшить число скважин, необходимых для обработки опорной поверхности пласта. При использовании меньшего числа скважин снижаются капитальные затраты на оборудование и ослабляется воздействие на окружающую среду из-за обработки пласта благодаря уменьшению числа стволов скважин на поверхности и количества оборудования на поверхности. Кроме того, по существу, в U-образных стволах скважин можно использовать меньшую величину отношения секции покрывающего слоя к нагревательной секции по сравнению с вертикальными стволами скважин. По существу, U-образные стволы скважин могут обеспечивать "гибкое" расположение отверстий стволов скважин на поверхности. Отверстия стволов скважин могут быть размещены в соответствии с поверхностной топологией пласта. В определнных вариантах осуществления отверстия стволов скважин размещаются в географически доступных местоположениях, таких как топологические высоты (например, холмы). Например, ствол скважины может иметь первое отверстие на первой топологической высоте и второе отверстие на второй топологической высоте, причм ствол скважины пересекает топологическую впадину (например, долину с наносным заполнением) между первой и второй топологическими высотами. При таком расположении отверстий можно избежать размещения отверстий или оборудования в топологических впадинах или других недоступных местоположениях. Кроме того, в топологически высоких областях уровень воды может отличаться от артезианского уровня. Стволы скважин могут быть пробурены таким образом, что отверстия не располагаются вблизи областей с проблемной экологией, таких как ручьи, места гнездовий или заповедники для животных (но не ограничивается указанным). В определнных вариантах воплощения нагреватель электрически изолирован от пласта, поскольку на внешней стороне нагревателя имеется небольшой потенциал или потенциал отсутствует. На фиг. 3 изображен вариант воплощения нагревателя, по существу, U-образной формы, который электрически изолирован от пласта. Первый конец нагревателя 220 находится в первом отверстии на поверхности 216,а второй конец находится во втором отверстии на поверхности. В некоторых вариантах осуществления у нагревателя 220 есть только первый конец на поверхности, при этом второй конец нагревателя находится в углеводородном слое 212 (нагреватель представляет собой односторонний нагреватель). На фиг. 4 и 5 изображены варианты осуществления односторонних нагревателей, которые электрически изолированы от пласта. В некоторых вариантах осуществления в одностороннем нагревателе 220 имеется удлиненная часть, которая, по существу, расположена горизонтально в углеводородном слое 212, как показано на фиг. 4 и 5. В некоторых вариантах осуществления в одностороннем нагревателе 220 имеется удлиненная часть с ориентацией в углеводородном слое 212, по существу, отличающейся от горизонтальной. Например, односторонний нагреватель может иметь удлиненную часть, которая ориентирована под 15 к горизонтали в углеводородном слое. Как показано на фиг. 3-5, нагреватель 220 включает в себя нагревательный элемент 218, расположенный в углеводородном слое 212. Нагревательный элемент 218 может быть нагревательным элементом в виде ферромагнитной трубы или ферромагнитным трубчатым нагревательным элементом. В определнных вариантах воплощения нагревательный элемент 218 представляет собой ограниченный по температуре нагреватель с трубчатым нагревательным элементом. В определнных вариантах воплощения нагревательный элемент 218 представляет собой трубку из нержавеющей стали, содержащей от 9 до 13 мас.% хрома, как, например, трубку из нержавеющей стали 410, трубку из нержавеющей стали Т/Р 91 или трубку из нержавеющей стали Т/Р 92. В определнных вариантах воплощения нагревательный элемент 218 включает в себя ферромагнитный материал с толщиной стенки, по меньшей мере, равной глубине скин-слоя ферромагнитного материала при 25 С. В некоторых вариантах осуществления нагревательный элемент 218 включает в себя ферромагнитный материал с толщиной стенки, по меньшей мере,равной удвоенной глубине скин-слоя ферромагнитного материала при 25 С, по меньшей мере в 3 раза больше глубины скин-слоя ферромагнитного материала 25 С или по меньшей мере в 4 раза больше глубины скин-слоя ферромагнитного материала при 25 С.- 12014215 Нагревательный элемент 218 соединн с одной или несколькими секциями 222. Эти секции 222 расположены в покрывающем слое 214. Секции 222 включают в себя материалы с повышенной электрической проводимостью, такие как медь или алюминий. В определнных вариантах воплощения секции 222 представляют собой углеродистую сталь с внутренним медным плакированием. Центральный проводник 226 расположен внутри нагревательного элемента 218. В некоторых вариантах осуществления нагревательный элемент 218 и центральный проводник 226 расположены или смонтированы в пласте путм разматывания нагревательного элемента и центрального проводника с одной или нескольких катушек, когда они помещаются в пласте. В некоторых вариантах осуществления нагревательный элемент 218 и центральный кабель 226 соединены вместе на одной катушке и разматываются как единая система с центральным проводником внутри нагревательного элемента. В некоторых вариантах осуществления нагревательный элемент 218 и центральный проводник 226 расположены на отдельных катушках, и центральный проводник располагается внутри нагревательного элемента после размещения нагревательного элемента в пласте. В определнных вариантах воплощения центральный проводник 226 располагается в центре нагревательного элемента 218 или вблизи центра. Центральный проводник 226 может быть, по существу, электрически изолирован от нагревательного элемента 218 по длине центрального проводника (например,длины центрального проводника в углеводородном слое 212). В определнных вариантах воплощения центральный проводник 226 отделен от нагревательного элемента 218 с помощью одного или нескольких электрически изолирующих центраторов. Центраторы могут содержать нитрид кремния или другой электрически изолирующий материал. Центраторы могут предотвращать электрический контакт между центральным проводником 226 и нагревательным элементом 218 для того, чтобы, например, исключить дуговой разряд или замыкание между центральным проводником и нагревательным элементом. В некоторых вариантах осуществления центральный проводник 226 представляет собой проводник (например,сплошной проводник или трубчатый проводник), так что нагреватель имеет конфигурацию проводникав-трубе. В определнных вариантах воплощения центральный проводник 226 является медным прутком или медной трубкой. В некоторых вариантах осуществления центральный проводник 226 и/или нагревательный элемент 218 имеют тонкий электрически изолирующий слой с целью предотвращения утечки тока из нагревательных элементов. В некоторых вариантах этот тонкий электрически изолирующий слой представляет собой оксид алюминия или покрытие из оксида алюминия, нанесенное напылением при высокой температуре. В некоторых вариантах осуществления тонкий электрически изолирующий слой представляет собой эмалевое покрытие из керамической композиции. Этот тонкий электрически изолирующий слой может предотвращать утечку тока из нагревательных элементов трхфазного нагревателя между элементами, утечку тока в пласт и утечку тока к другим нагревателям в пласте. Таким образом, трхфазный нагреватель может иметь увеличенную длину нагревателя. В определнных вариантах воплощения центральный проводник 226 представляет собой изолированный проводник. Этот изолированный проводник может содержать электрически проводящую сердцевину внутри электрически проводящей оболочки с электрической изоляцией между сердцевиной и оболочкой. В определнных вариантах воплощения изолированный проводник содержит медную сердцевину внутри оболочки из неферромагнитной нержавеющей стали (например, нержавеющей стали 347) с изоляцией из оксида магния между сердцевиной и оболочкой. Эта сердцевина может использоваться для пропускания электрического тока через изолированный проводник. В некоторых вариантах осуществления изолированный проводник помещн внутри нагревательного элемента 218 без центраторов или распорных деталей между изолированным проводником и нагревательным элементом. Оболочка и электрическая изоляция изолированного проводника могут электрически изолировать сердцевину от нагревательного элемента 218 в случае касания центрального проводника и нагревательного элемента. Таким образом, предотвращается электрическое короткое замыкание между сердцевиной и нагревательным элементом 218. Изолированный проводник или другой сплошной центральный проводник 226 могут быть защищены от разрушения или деформации под действием нагревательного элемента 218. В определнных вариантах воплощения один конец центрального проводника 226 электрически соединн с одним концом нагревательного элемента 218 на поверхности земли 216 с использованием электрического соединения 224, как показано на фиг. 3. В некоторых вариантах осуществления конец центрального проводника 226 электрически соединн с концом нагревательного элемента 218 в углеводородном слое 212 с использованием электрического соединения 224, как показано на фиг. 4 и 5. Таким образом, центральный проводник 226 электрически соединн с нагревательным элементом 218 в последовательной конфигурации в вариантах, изображнных на фиг. 3-5. В определнных вариантах воплощения центральный проводник 226 представляет собой изолированный проводник, причм сердцевина изолированного проводника электрически соединена с нагревательным элементом 218 в последовательной конфигурации. Центральный проводник 226 представляет собой обратный электрический проводник для нагревательного элемента 218, так что ток в центральном проводнике течт в направлении, противоположном току в нагревательном элементе (как показано стрелками 228). Электромагнитное поле, генерируемое при про- 13014215 текании тока в центральном проводнике 226, по существу, ограничивает поток электронов и выделение тепла внутри нагревательного элемента 218 (например, внутренней стенкой нагревательного элемента) ниже температуры Кюри ферромагнитного материала в нагревательном элементе. Таким образом, наружная сторона нагревательного элемента 218, по существу, имеет нулевой потенциал, и нагревательный элемент электрически изолирован от пласта и любого соседнего нагревателя или нагревательного элемента при температуре ниже точки Кюри ферромагнитного материала (например, при 25 С). Поскольку наружная сторона нагревательного элемента 218, по существу, имеет нулевой потенциал и нагревательный элемент электрически изолирован от пласта и любого соседнего нагревателя или нагревательного элемента, это позволяет использовать более длинные нагреватели в углеводородном слое 212 без существенных электрических потерь (тока) в углеводородный слой. Например, в углеводородном слое 212 могут быть использованы нагреватели, имеющие длину по меньшей мере около 100 м, по меньшей мере приблизительно 500 м или по меньшей мере приблизительно 1000 м. При подаче электрического тока в нагревательный элемент 218 и центральный проводник 226 нагреватель выделяет тепло. В определнных вариантах воплощения нагревательный элемент 218 выделяет большую часть или всю тепловую мощность нагревателя. Например, когда электрический ток проходит через ферромагнитный материал в нагревательном элементе 218 и медь или другой материал с низким сопротивлением в центральном проводнике 226, нагревательный элемент выделяет большую часть или всю тепловую мощность нагревателя. Выделение большей части тепла внешним проводником (нагревательным элементом 218), вместо центрального проводника 226, может повысить эффективность теплопередачи в пласт, обеспечивая прямую теплопередачу от элемента, выделяющего тепло (нагревательный элемент 218), в пласт и может снизить потери тепла в нагревателе 220 (например, потери тепла между центральным проводником и наружным проводником, если центральный проводник является тепловыделяющим элементом). Выделение тепла в нагревательном элементе 218, вместо центрального проводника 226, также увеличивает площадь тепловыделяющей поверхности нагревателя 220. Таким образом,при той же эксплуатационной температуре нагревателя 220 в пласт можно подать больше тепла с использованием в качестве тепловыделяющего элемента внешнего проводника (нагревательного элемента 218), чем в случае центрального проводника 226. В некоторых вариантах осуществления флюид проходит через нагреватель 220 (показано стрелками 230 на фиг. 3 и 4) с целью подогрева пласта и/или для рекуперации тепла нагревательного элемента. В изображнном на фиг. 3 варианте флюид проходит из одного конца нагревателя 220 в другой конец нагревателя внутри и сквозь нагревательный элемент 218 и снаружи центрального проводника 226, как показано стрелками 230. В изображнном на фиг. 4 варианте флюид проходит в нагреватель 220 через центральный проводник 226, который является трубчатым проводником, как показано стрелками 230. Центральный проводник 226 включает в себя отверстия 232 на конце проводника, чтобы обеспечить выход флюида из центрального проводника. Отверстия 232 могут представлять собой перфорации или другие отверстия, которые обеспечивают проход флюида внутрь центрального проводника 226 и/или из проводника. Затем флюид возвращается к внутренней поверхности нагревательного элемента 218 и наружной поверхности центрального проводника 226, как показано стрелками 230. Флюид, проходящий внутри нагревателя 220 (как показано стрелками 230 на фиг. 3 и 4), может быть использован для подогрева нагревателя, для начального нагрева пласта и/или для рекуперации тепла из пласта после окончания нагрева в процессе термообработки in situ. Флюиды, которые могут протекать через нагреватель, включают (но не ограничиваются указанным) воздух, воду, пар, гелий, диоксид углерода или другие флюиды с высокой тепломкостью. В некоторых вариантах осуществления горячий флюид, такой как диоксид углерода, гелий или DOWTHERM (от фирмы The Dow Chemical Company,Midland, Michigan, U.S.A.), проходит сквозь трубчатые нагревательные элементы, подавая тепло в пласт. Горячий флюид может быть использован для обеспечения теплом пласта до использования электрического нагрева для предоставления тепла в пласт. В некоторых вариантах горячий флюид используется для предоставления тепла в дополнение к электрическому нагреву. Применение флюида для предоставления тепла или подогрева пласта в дополнение к электрическому нагреву может быть более дешвым,чем использование одного электрического нагрева для предоставления тепла в пласт. В некоторых вариантах осуществления через трубчатый нагревательный элемент подают воду и/или водяной пар с целью рекуперации тепла пласта после термообработки пласта in situ. Нагретая вода и/или водяной пар могут быть использованы для добычи растворением и/или в других процессах. Дальнейшие модификации и альтернативные варианты исполнения различных аспектов изобретения могут быть очевидными для специалистов в этой области техники с учтом настоящего описания. Соответственно настоящее описание следует рассматривать только как иллюстративное, которое приведено с целью раскрытия общего способа осуществления изобретения для специалистов в этой области техники. Следует понимать, что показанные и раскрытые в описании формы изобретения считаются в настоящее время предпочтительными вариантами исполнения. Проиллюстрированные и описанные здесь элементы и материалы могут быть заменены, детали и процессы могут быть обращены и определенные признаки изобретения могут быть использованы независимо, - все это очевидно для специалистов в этой области техники после ознакомления с преимуществами настоящего изобретения. Изменения- 14014215 в описанных здесь элементах могут быть выполнены без отклонения от духа и объма изобретения, которое описано в следующей ниже формуле изобретения. Кроме того, следует понимать, что в определнных вариантах изобретения описанные здесь независимые признаки могут сочетаться. ФОРМУЛА ИЗОБРЕТЕНИЯ 1. Способ нагрева подземного углеводородсодержащего пласта с использованием системы, содержащей трубопровод, расположенный в отверстии в пласте, причм трубопровод содержит ферромагнитный материал, и электрический проводник, расположенный внутри трубопровода и электрически соединнный с трубопроводом на конце трубопровода или вблизи конца трубопровода, так что электрический проводник и трубопровод соединены последовательно, причм направление электрического тока в электрическом проводнике, по существу, противоположно направлению электрического тока в трубопроводе при подаче электрического тока в систему; включающий подачу электрического тока в систему, при этом поток электронов, по существу, ограничен внутри трубопровода, а трубопровод выделяет тепло и нагревает пласт при подаче электрического тока в систему, отличающийся тем, что внешнюю сторону трубопровода электрически изолируют от пласта электрически изолирующим слоем на поверхности трубопровода; трубопровод конфигурируют так, что длина внешней окружности трубопровода больше, чем длина внешней окружности электрического проводника, при этом тепло, выделяющееся в стенке трубопровода,передатся от периферии трубопровода в пласт, благодаря чему трубопровод выделяет большую часть тепловой мощности системы; а толщину стенки трубопровода выбирают равной по меньшей мере одной глубине скин-слоя ферромагнитного материала при 25 С, благодаря чему поток электронов, по существу, ограничивается внутри трубопровода электромагнитным полем, создаваемым при протекании электрического тока в электрическом проводнике, так что на внешней поверхности трубопровода или вблизи не потенциал, по существу, равен нулю при 25 С. 2. Способ по п.1, отличающийся тем, что трубопровод находится в непосредственной близости от пласта. 3. Способ по любому из пп.1, 2, отличающийся тем, что трубопровод электрически изолирован по меньшей мере от одного смежного трубопровода, расположенного в пласте. 4. Способ по любому из пп.1-3, отличающийся тем, что указанное отверстие имеет первый конец,находящийся в первом местоположении на поверхности, и второй конец, находящийся во втором местоположении на поверхности пласта. 5. Способ по любому из пп.1-4, отличающийся тем, что большая часть трубопровода ориентирована, по существу, горизонтально в углеводородном слое пласта. 6. Способ по любому из пп.1-5, отличающийся тем, что электрический проводник, по существу электрически, изолирован от трубопровода по длине трубопровода, причм проводник электрически соединн с трубопроводом вблизи конца трубопровода. 7. Способ по любому из пп.1-6, отличающийся тем, что система дополнительно содержит один или более центраторов для того, чтобы электрически отделить трубопровод от электрического проводника. 8. Способ по любому из пп.1-7, отличающийся тем, что система дополнительно содержит электрически изолирующий слой на внешней поверхности электрического проводника. 9. Способ по любому из пп.1-8, отличающийся тем, что трубопровод выполнен с возможностью обеспечения первой выходной тепловой мощности ниже температуры Кюри ферромагнитного элемента,при этом трубопровод выполнен с возможностью обеспечения автоматически второй выходной тепловой мощности, когда температура приблизительно равна или выше температуры Кюри ферромагнитного элемента, причм вторая выходная тепловая мощность меньше по сравнению с первой выходной тепловой мощностью. 10. Способ по любому из пп.1-9, отличающийся тем, что электрический проводник представляет собой изолированный проводник, причм изолированный проводник включает в себя электропроводящую сердцевину внутри электропроводящей оболочки с электрической изоляцией между сердцевиной и оболочкой. 11. Способ по п.10, отличающийся тем, что сердцевина выполнена из меди, а оболочка представляет собой неферромагнитную нержавеющую сталь. 12. Способ по любому из пп.1-11, отличающийся тем, что в системе отношение диапазона изменения равно по меньшей мере 2:1. 13. Способ по любому из пп.1-12, отличающийся тем, что трубопровод имеет длину по меньшей мере 100 м, по меньшей мере 500 м или по меньшей мере 1000 м и находится в углеводородном слое пласта.- 15014215 14. Способ по любому из пп.1-13, отличающийся тем, что трубопровод выполнен с возможностью протекания флюида через трубопровод с целью (а) подогрева трубопровода и системы и/или (b) рекуперации тепла из системы. 15. Способ по любому из пп.1-14, отличающийся тем, что электрический проводник представляет собой трубчатый проводник с отверстиями на конце электрического проводника или вблизи конца, причм конфигурация отверстий обеспечивает протекание флюида между внутренней частью электрического проводника и трубопроводом. 16. Способ по п.1, отличающийся тем, что тепло в пласт передают таким образом, что, по меньшей мере, некоторые углеводороды подвергаются пиролизу в пласте. 17. Способ по п.16, отличающийся тем, что дополнительно включает в себя подачу горячего теплоносителя в трубопровод для обеспечения передачи тепла в пласт. 18. Способ по п.17, отличающийся тем, что горячий теплоноситель представляет собой подогретую воду, водяной пар и/или подогретый диоксид углерода. 19. Способ по любому из пп.16-18, отличающийся тем, что дополнительно включает в себя добычу из пласта флюида, предназначенного для переработки в транспортное топливо. 20. Способ по любому из пп.16-19, отличающийся тем, что дополнительно включает в себя подачу текучей среды в трубопровод с целью рекуперации тепла из системы. 21. Способ установки системы из п.1 в отверстии, включающий разматывание трубопровода и электрического проводника с одной или более катушек и размещение трубопровода и электрического проводника в отверстии в пласте.
МПК / Метки
МПК: E21B 43/24, E21B 36/00, E21B 36/04
Метки: электрически, существу, изолированным, нагреватель, температуре, ограниченный, трубопроводом, пласта
Код ссылки
<a href="https://easpatents.com/18-14215-ogranichennyjj-po-temperature-nagrevatel-s-truboprovodom-po-sushhestvu-elektricheski-izolirovannym-ot-plasta.html" rel="bookmark" title="База патентов Евразийского Союза">Ограниченный по температуре нагреватель с трубопроводом, по существу электрически изолированным от пласта</a>
Предыдущий патент: Кобальтовые катализаторы на носителе для синтеза фишера-тропша
Следующий патент: Ион-переносящая мембранная система
Случайный патент: Гидрогенолиз сахарного сырья