Номер патента: 22004

Опубликовано: 30.10.2015

Авторы: Мастерман Томас, Медофф Маршалл

Есть еще 22 страницы.

Смотреть все страницы или скачать PDF файл.

Формула / Реферат

1. Способ осахаривания исходного материала, включающий осахаривание биомассы в качестве исходного материала в сосуде путем ее перемешивания с текучей средой и осахаривающим агентом с помощью струйного смесителя, содержащего вал и лопастное колесо, установленное на конце вала, и кожух, окружающий лопастное колесо, где сосуд имеет куполообразное дно, а вертикальная ось вала струйно-поточного смесителя смещена от центральной оси сосуда.

2. Способ по п.1, в котором исходный материал имеет объемную плотность, составляющую менее чем 0,5 г/см3.

3. Способ по п.1 или 2, в котором текучая среда включает воду.

4. Способ по любому из предыдущих пунктов, в котором осахаривающий агент включает фермент.

5. Способ по любому из пп.1-4, в котором струйный смеситель содержит множество струйно-поточных смесителей, причем каждый из струйных смесителей обеспечивает движение текучей среды в первом и втором режимах, обеспечивая нагнетание текучей среды соответственно в верхнюю и в нижнюю часть сосуда.

6. Способ по п.5, в котором в течение по меньшей мере части времени перемешивания все струйно-поточные смесители работают в первом режиме.

7. Способ по п.5 или 6, в котором в течение по меньшей мере части времени перемешивания некоторые струйно-поточные смесители работают в первом режиме, в то время как другие работают во втором режиме.

8. Способ по п.6, дополнительно включающий добавление микроорганизма в сосуд и ферментацию осахаренного исходного материала, в котором в течение по меньшей мере части времени ферментации все струйно-поточные смесители работают в первом режиме.

9. Способ по любому из предыдущих пунктов, в котором осахаривание включает добавление исходного материала в текучую среду отдельными порциями и перемешивание каждой порции исходного материала с текучей средой с помощью струйного смесителя перед добавлением следующей порции исходного материала.

10. Способ по любому из предыдущих пунктов, дополнительно включающий измерение содержания глюкозы в смеси исходного материала, текучей среды и осахаривающего агента в процессе работы струйного смесителя.

11. Способ по любому из предыдущих пунктов, включающий дополнительное введение исходного материала и осахаривающего агента в сосуд в процессе осахаривания.

12. Способ по любому из предыдущих пунктов, в котором указанный сосуд представляет собой резервуар железнодорожной цистерны или автомобильной цистерны.

13. Способ по любому из предыдущих пунктов, в котором исходный материал включает целлюлозный или лигноцеллюлозный материал.

14. Способ по п.13, в котором исходный материал включает бумагу.

15. Способ по любому из предыдущих пунктов, дополнительно включающий добавление эмульгатора или поверхностно-активного вещества в смесь в сосуде.

16. Способ по любому из предыдущих пунктов, который включает добавление микроорганизма в сосуд и ферментацию осахаренного исходного материала.

Текст

Смотреть все

Биомассу (например, растительную биомассу, животную биомассу и биомассу муниципальных отходов) обрабатывают для производства полезной продукции, включая топливо. Например,описаны системы, которые могут превращать исходные материалы в раствор сахара, который можно затем подвергать ферментации для производства этанола. Биомассу в качестве исходного материала осахаривают в сосуде под действием струйного смесителя, причем сосуд также содержит текучую среду и осахаривающий агент. Родственные заявки Заявка на настоящий патент претендует на приоритет предварительной патентной заявки США 61/179995, поданной 20 мая 2009 г., и предварительной патентной заявки США 61/218832, поданной 19 июня 2009 г. Полное описание каждой из данных временных заявок включено посредством ссылки в настоящий документ. Уровень техники Целлюлозные и лигноцеллюлозные материалы производят, перерабатывают и используют в многочисленных применениях. Часто эти материалы используют однократно и затем выбрасывают в виде мусора или просто рассматривают в качестве отходов, включая, например, стоки, выжимки, опилки и солому. Разнообразные целлюлозные и лигноцеллюлозные материалы, их использование и применения описаны в патентах США 7307108, 7074918, 6448307, 6258876, 6207729, 5973035 и 5952105, а также в различных патентных заявках, включая опубликованные патентные заявки США 2006/010648 "Волокнистые материалы и композиты" (подана 23 марта 2006 г.) и 2007/0045456 "Волокнистые материалы и композиты". Сущность изобретения В общем, настоящее изобретение относится к способам осахаривания или ожижения материала, например целлюлозного или лигноцеллюлозного исходного материала, путем конверсии целлюлозной части материала, в низкомолекулярные сахара, например, используя фермент. Настоящее изобретение также относится к конверсии исходного материала в продукт, например, путем ферментации. В способах, описанных в настоящем документе, можно использовать имеющие низкую объемную плотность материалы, например целлюлозные или лигноцеллюлозные исходные материалы, которые были подвергнуты предварительной физической обработке, чтобы обеспечить объемную плотность, составляющую менее чем приблизительно 0,5 г/см 3, например менее чем приблизительно 0,35, 0,25, 0,20,0,15, 0,10, 0,05 г/см 3 или менее, например 0,025 г/см 3. Такие материалы могут оказаться особенно затруднительными для смешивания с жидкостями, например с водой или системой растворителей для осахаривания, ферментации или другой обработки. Вследствие своей низкой объемной плотности, эти материалы склонны к флотации на поверхности жидкости, а не к диспергированию в ней. В некоторых случаях материалы могут обладать гидрофобностью,высокой кристалличностью или плохой смачиваемостью на иных основаниях. В то же время желательно обрабатывать исходный материал при относительно высоком уровне дисперсии твердых веществ, чтобы получить высокую конечную концентрацию сахара в осахаренном материале или высокую концентрацию целевого продукта после обработки (например, этанола или другого спирта (спиртов) после ферментации). В некоторых случаях при использовании способов, описанных в настоящем документе, содержание твердых веществ в дисперсии в процессе обработки может составлять, например, по меньшей мере 20, 25, 30, 35, 40, 45 или даже по меньшей мере 50 мас.% растворенных твердых веществ. Авторы настоящего изобретения обнаружили, что можно повысить уровень диспергирования исходного материала в жидкой смеси, в результате чего можно повысить содержание твердых веществ в смеси, используя определенные способы и оборудование для перемешивания. Способы и оборудование для перемешивания, описанные в настоящем документе, также повышают массоперенос и в результате скорости реакций в смеси предотвращают или сводят к минимуму вред для чувствительных ингредиентов смеси, включая микроорганизмы и ферменты. В частности, обнаружено, что способы струйного перемешивания, в том числе, например, струйная аэрация и струйно-поточное перемешивание, обеспечивают хорошее смачивание, диспергирование и механическое измельчение. При увеличении содержания твердых веществ в смеси этот процесс можно осуществлять быстрее, эффективнее и экономичнее, а также можно повысить получаемую в результате концентрацию конечного продукта. Некоторые из способов, описанных в настоящем документе, включают осахаривание исходного материала и транспортировку исходного материала из отдаленного места, например, в котором исходный материал изготавливают или хранят, на производственное предприятие. В некоторых случаях осахаривание можно осуществлять частично или полностью в процессе транспортировки. В таких случаях может оказаться выгодным осуществлять перемешивание, например струйное перемешивание, на транспортном средстве. В некоторых случаях осахаривание можно осуществлять в процессе транспортировки. В некоторых случаях ферментация может происходить частично или полностью в процессе транспортировки. В некоторых вариантах осуществления способ дополнительно включает уменьшение стойкости исходного материала до или во время осахаривания. Способ может включать дополнительные стадии измерения содержание лигнина в исходном материале и определение необходимости предварительной обработки и ее условий на основании измеренного содержания лигнина. В одном аспекте настоящее изобретение относится к способу, который включает осахаривание биомассы как исходного материала путем перемешивания исходный материала с жидкой средой и осахаривающим агентом в сосуде с использование струйного смесителя. Некоторые варианты осуществления включают одну или более из следующих отличительных особенностей. Исходный материал может иметь объемную плотность, составляющую менее чем приблизи-1 022004 тельно 0,5 г/см 3. Исходный материал может представлять собой, например, целлюлозный или лигноцеллюлозный материал. Жидкость может включать воду. Осахаривающий агент может включать фермент. Струйный смеситель может включать, например, струйно-поточный смеситель, смеситель струйноаэрационного типа или струйный смеситель с всасывающей камерой. Если используют смеситель струйно-аэрационного типа, его можно использовать без нагнетания воздуха через струйный смеситель. Например, если смеситель струйно-аэрационного типа включает наконечник, имеющий первую впускную линию и вторую впускную линию, в некоторых случаях обе впускные линии заполнены жидкостью. В некоторых случаях перемешивание включает порционное введение исходного материала в жидкую среду и перемешивание между добавлениями порций. Способ может дополнительно включать измерение содержания глюкозы в смеси исходного материала, жидкой среды и осахаривающего агента в процессе перемешивания, и в некоторых случаях добавление исходного материала и осахаривающего агента в сосуд в процессе осахаривания. Сосуд для перемешивания может представлять собой, например, резервуар,железнодорожную цистерну или автомобильную цистерну. Осахаривание может в некоторых случаях происходить частично или полностью в процессе транспортировки смеси исходного материала, жидкой среды и осахаривающего агента. Способ может дополнительно включать добавление эмульгатора или поверхностно-активного вещества в смесь в сосуде. В другом аспекте настоящее изобретение относится к осахариванию биомассы в качестве исходного материала путем перемешивания исходного материала с жидкой средой и осахаривающим агентом в сосуде, используя смеситель, который создает обычно тороидальный поток в сосуде. В некоторых вариантах осуществления смеситель имеет конфигурацию, которая ограничивает любое увеличение общей температуры жидкой среды до менее чем 5 С в процессе перемешивания. В некоторых вариантах осуществления этот аспект может также включать любые из отличительных особенностей, обсуждаемых выше. В следующем аспекте настоящее изобретение относится к способу, который включает конверсию низкомолекулярного сахара в продукт путем перемешивания низкомолекулярного сахара с микроорганизмом в жидкой среде с использованием струйного смесителя. Некоторые варианты осуществления включают одну или более из следующих отличительных особенностей. Жидкая среда может включать воду. Микроорганизм может включать дрожжи. Струйный смеситель может включать струйно-поточный смеситель, смеситель струйно-аэрационного типа или струйный смеситель с всасывающей камерой. В другом аспекте настоящее изобретение относится к устройству, которое включает резервуар,струйный смеситель, имеющий наконечник, расположенный в резервуаре, подающее устройство, предназначенное для подачи биомассы в качестве исходного материала в резервуар, и подающее устройство,предназначенное для подачи отмеренного количества осахаривающего агента в резервуар. Некоторые варианты осуществления включают одну или более из следующих отличительных особенностей. Струйный смеситель может дополнительно включать мотор, и устройство может дополнительно включать приспособление, предназначенное для измерения вращающего момента мотора в процессе перемешивания. Устройство может также включать регулятор, который регулирует работ подающего исходный материал устройства и/или подающего осахаривающий агент устройства на основании входящего сигнала от измеряющего вращающий момент приспособления. Настоящее изобретение также относится к способу, который включает осахаривание биомассы в качестве исходного материала в сосуде с образованием осахаренной смеси; инокуляцию осахаренной смеси в сосуде микроорганизмом и выдерживание инокулированной осахаренной смеси для ферментации в сосуде. В некоторых случаях содержимое сосуда переносят в сосуд для транспортировки в процессе ферментации, и ферментация продолжается в сосуде для транспортировки. Способ может дополнительно включать перемешивание содержимого сосуда с помощью струйного смесителя в процессе осахаривания и ферментации. В некоторых вариантах осуществления способ дополнительно включает измерение содержания кислорода и этанол и/или содержание сахара в смеси в процессе ферментации. В другом аспекте настоящее изобретение относится к ферментационной системе, которая включает сосуд, имеющий выходное отверстие; источник кислорода в соединении с сосудом; измеритель содержания кислорода, предназначенный для измерения содержания кислорода в жидкости в сосуде; и регулятор, предназначенный для регулирования содержания кислорода в жидкости с использованием выходного отверстия, и источник кислорода в ответ на входной сигнал от измерителя содержания кислорода. Скорость потока кислорода в сосуд, если требуется окисление, может быть относительно низкой. Например, регулятор можно настроить для введения кислорода в сосуд со скоростью, составляющей менее чем 0,2 об/об/мин, например, менее чем 0,1, 0,05, 0,025 или даже менее чем 0,01 об/об/мин. Ферментационная система может дополнительно включать измеритель уровня ферментации, предназначенный для измерения концентрации сахара и/или концентрации этанола в жидкости в сосуде; и регулятор, предназначенный для прекращения ферментации на основании входящего сигнала, полученного от измерителя ферментации. В некоторых случаях система включает модуль для остановки ферментации, предназначенный для прекращения ферментации в ответ на сигнал, полученный от регулятора. Все публикации, патентные заявки, патенты и другие источники, упомянутые в настоящем документе или приложенные к нему, включены в него во всей своей полноте в отношении всего своего содержания. Описание чертежей Фиг. 1 представляет схему, иллюстрирующую ферментативный гидролиз целлюлозы в глюкозу. Фиг. 2 представляет технологическую схему, иллюстрирующую конверсию исходного материала в этанол в процессе производства и транспортировку раствора глюкозы. Фиг. 2 А представляет схематическое изображение системы осахаривания согласно одному варианту осуществления. Фиг. 3 представляет схематическое изображение завода по производству этанола, который был переоборудован для использования растворов и суспензий, описанных в настоящем документе. Фиг. 4 и 4 А представляют схемы, иллюстрирующие струйный поток, выходящий из наконечника. Фиг. 5 представляет схематический перспективный вид струйно-поточного смесителя согласно одному варианту осуществления. Фиг. 5 А представляет увеличенный перспективный вид лопастного колеса и струйной трубы струйно-поточного смесителя, изображенного на фиг. 5. Фиг. 5 В представляет увеличенный перспективный вид альтернативного варианта лопастного колеса. Фиг. 6 представляет схему наконечника для струйного перемешивания с всасывающей камерой согласно одному варианту осуществления. Фиг. 6 А представляет перспективный вид системы для струйного перемешивания с всасывающей камерой согласно другому варианту осуществления. Фиг. 7 представляет схематический перспективный вид наконечника для струйного перемешивания системы струйного перемешивания с всасывающей камерой согласно другому альтернативному варианту осуществления. Фиг. 8 представляет схематический перспективный вид резервуара и системы струйного перемешивания аэрационного типа, расположенной в резервуаре, причем резервуар показан прозрачным, чтобы было видно струйный смеситель и связанные с ним трубопроводы. Фиг. 8 А представляет перспективный вид струйного смесителя, используемого в системе струйной аэрации, показанной на фиг. 8. Фиг. 8 В представляет схематический перспективный вид аналогичной системы, в которой предусмотрен приток воздуха. Фиг. 9 представляет вид в поперечном разрезе смесителя струйно-аэрационного типа согласно одному варианту осуществления. Фиг. 10 представляет вид в поперечном разрезе смесителя струйно-аэрационного типа согласно альтернативному варианту осуществления. Фиг. 11-13 представляют схемы, иллюстрирующие альтернативные структуры потоков в резервуарах, содержащих струйные смесители различных конфигураций. Фиг. 14 представляет схему, иллюстрирующую структуру потока, который происходит в резервуаре в процессе обратной продувки согласно одному варианту осуществления. Фиг. 15 и 15 А представляют автомобильную цистерну и железнодорожную цистерну, соответственно, которые предназначены для перемешивания в процессе транспортировки с использованием воздушной импульсной передвижной системы перемешивания. Фиг. 16 и 16 А представляют перспективные виды двух вариантов осуществления перемешивающих головок, используемых в смесителе согласно альтернативному варианту осуществления. Фиг. 17 представляет боковой вид струйной системы аэрационного типа согласно другому варианту осуществления, показывающий многоуровневое расположение наконечников в резервуаре. Фиг. 18 и 18 А представляют схематический вид сверху и перспективный вид, соответственно, устройства, которое сводит к минимуму удержание вдоль стенок резервуара в процессе перемешивания. Фиг. 19, 20 и 21-21 А представляют виды различных водяных струйных устройств, которые обеспечивают перемешивание при одновременном сведении к минимуму удерживания вдоль стенок резервуара. Фиг. 22 представляет вид в поперечном разрезе резервуара, имеющего куполообразное дно и два струйных смесителя, входящих в резервуар сверху. Подробное описание Используя способы, описанные в настоящем документе, биомассу (например, растительную биомассу, животную биомассу и биомассу муниципальных отходов) можно обрабатывать, чтобы производить полезные промежуточные и конечные продукты, в том числе те, которые описаны в настоящем документе. В системах и способах, которые описаны в настоящем документе, можно использовать в качестве исходных материалов целлюлозные и/или лигноцеллюлозные материалы, которые являются легкодоступными, но может оказаться затруднительным их обработка данными способами, в том числе путем ферментации. Многими из способов, описанных в настоящем документе, можно эффективно снижать уровень стойкости исходного материала, упрощая его обработку, путем биообработки (например, используя какой-либо микроорганизм, описанный в настоящем документе, в том числе гомоацетоген или гетероацетоген, и/или какой-либо фермент, описанный в настоящем документе), термической обработки(например, путем газификации или пиролиза) или химическими способами (включая, например, кислотный гидролиз или окисление). Биомассу в качестве исходного материала можно обрабатывать или пере-3 022004 рабатывать, используя один или более из способов, описанных в настоящем документе, в том числе механическую обработку, химическую обработку, облучение, ультразвуковую обработку, окисление, пиролиз или паровой взрыв. Различные системы и способы обработки можно использовать в виде сочетания двух, трех, четырех или большего числа из данных технологий или других технологий, описанных в настоящем документе, и иным образом. В способах, описанных в настоящем документе, можно использовать имеющие низкую объемную плотность материалы, например целлюлозные или лигноцеллюлозные исходные материалы, которые прошли предварительную физическую обработку и приобрели объемную плотность, составляющую менее чем приблизительно 0,5 г/см 3, например менее чем приблизительно 0,35, 0,25, 0,20, 0,15, 0,10, 0,05 г/см 3 или менее, например 0,025 г/см 3. Объемную плотность определяют, используя американский стандартный метод испытаний ASTM D1895B. Вкратце, этот способ включает наполнение образцом мерного цилиндра известного объема и измерение массы данного образца. Объемную плотность вычисляют делением массы образца в граммах на известный объем цилиндра в кубических сантиметрах. Чтобы превратить исходный материал в такую форму, которую можно легко обрабатывать, содержащую глюкан или ксилан целлюлозу в исходном материале гидролизуют, получая низкомолекулярные углеводы, в том числе сахара, с использованием осахаривающего агента, например фермента или кислоты, причем такой процесс называют термином "осахаривание". Низкомолекулярные углеводы можно затем использовать, например, на существующем производственном предприятии, в том числе на заводе по производству белков одноклеточных организмов, в производстве ферментов или топлива, включая,например, завод по производству этанола. Материалы, которые включают целлюлозу, можно обрабатывать осахаривающим агентом путем взаимодействия материала и осахаривающего агента в жидкой среде, например, в растворителе, в том числе в водном растворе. Осахаривающий агент, материал и жидкую среду тщательно перемешивают,используя один или более смесителей, имеющих характеристики перемешивания, которые описаны в настоящем документе, например один или более струйных смесителей. В некоторых вариантах осуществления материал и/или осахаривающий агент добавляют порциями, а не целиком единовременно. Например, порцию материала можно добавлять в жидкую среду и перемешивать с осахаривающим агентом до тех пор, пока материал не станет, по меньшей мере, частично осахаренным, и в этот момент времени в смесь добавляют вторую порцию материала. Этот процесс можно продолжать, пока не будет получена целевая концентрация сахара. Ферменты и уничтожающие биомассу организмы, которые разлагают биомассу, включая том числе целлюлозные и/или лигниновые компоненты биомассы, содержат или производят различные целлюлитические ферменты (целлюлазы), лигниназы или различные низкомолекулярные уничтожающие биомассу метаболиты. Эти ферменты могут представлять собой комплекс ферментов, которые оказывают синергетическое действие, разлагая кристаллические целлюлозные или лигниновые компоненты биомассы. Примеры целлюлитических ферментов включают эндоглюканазы, целлобиогидролазы и целлобиазы (глюкозидазы). Как показано на фиг. 1, целлюлозный субстрат вначале гидролизуется эндоглюканазами в случайных положениях, образуя олигомерные промежуточные продукты. Эти промежуточные продукты становятся затем субстратами для расщепляющих экзоглюканаз, включая целлобиогидралазу, которые образуют целлобиозу из концевых звеньев целлюлозного полимера. Целлобиоза представляет собой водороастворимый 1,4-связанный димер глюкозы. Наконец, целлобиаза расщепляет целлобиозу с образованием глюкозы. Подходящие целлюлазы будут обсуждаться в следующем разделе настоящего документа. Процесс осахаривания можно частично или полностью осуществлять (а) в резервуаре (например, в резервуаре, имеющем объем, который составляет по меньшей мере 4000, 40000, 400000, 4000000 или 40000000 л), на производственном предприятии, и/или (b) в процессе перевозки, например, в железнодорожной цистерне, автомобильной цистерне или в резервуаре большой емкости или трюме судна. Время,требуемое для полного осахаривания, будет зависеть от условий процесса и используемого исходного материала и фермента. Если осахаривание осуществляют на производственном предприятии в контролируемых условиях, целлюлозу можно практически полностью превратить в глюкозу в течение приблизительно 12-96 ч. Если осахаривание осуществляют частично или полностью в процессе перевозки, осахаривание может занимать более продолжительное время. В некоторых случаях осахаривание осуществляют при значении рН, составляющее приблизительно от 4 до 7, например приблизительно от 4,5 до 6 или приблизительно от 5 до 6. Как правило, предпочтительно, чтобы конечная концентрация глюкозы в растворе сахара была относительно высокой, например, более чем 15 мас.% или более чем 20, 30, 40, 50, 60, 70, 80, 90 или даже более чем 95 мас.%. Это уменьшает подлежащий перевозке объем и также ингибирует микробный рост в растворе. После осахаривания объем воды можно уменьшить, например, выпариванием или отгонкой. Раствор относительно высокой концентрации можно получить ограничением количества воды, добавляемого к исходному материалу с ферментом. Концентрацию можно также контролировать, регулируя степень происходящего осахаривания. Например, концентрацию можно увеличить добавлением большего количества исходного материала в раствор. Растворимость исходного материала в среде можно увеличить, например, увеличением температуры раствора и/или добавлением поверхностно-активного вещества, как будет обсуждаться ниже. Например, раствор можно выдерживать при температуре, составляющей 40-50, 50-60, 60-80 С или даже выше. На фиг. 2 показан способ производства спирта, например этанола, который может включать, например, необязательную предварительную физическую обработку исходного материала, например, чтобы уменьшить размер его частиц (стадия 110), до и/или после данной обработки, необязательную обработку исходного материал, чтобы уменьшить его стойкость (стадия 112), и осахаривание исходного материала, чтобы получить раствор сахара (стадия 114). Осахаривание можно осуществлять путем перемешивания дисперсии исходного материала в жидкой среде, например воде, с ферментом (стадия 111), как будет подробно обсуждаться ниже. Во время или после осахаривания смесь (если осахаривание предстоит частично или полностью осуществлять в процессе транспортировки) или раствор можно транспортировать, например, по трубопроводу, железной дороге, автомобильным или водным транспортом на производственное предприятие (стадия 116). На этом предприятии раствор можно подвергать биообработке для получения целевого продукта, например этанола (стадия 118), который затем подлежит дальнейшей обработке, например, путем дистилляции (стадия 120). Отдельные стадии этого процесса будут подробно обсуждены ниже. При необходимости стадии измерения содержания лигнина (стадия 122) и установления или регулирования технологических параметров (стадия 124) можно осуществлять на различных этапах процесса, например, непосредственно перед стадией (стадиями) процесса, которые используют для изменения структуры исходного материала, как показано. Если включены эти стадии, технологические параметры регулируют для компенсации изменчивости содержания лигнина в исходном материале,как описано во временной патентной заявке США 61/151724, поданной 11 февраля 2009 г., полное описание которой включено в настоящий документ посредством ссылки. Стадию перемешивания 111 и стадию осахаривания 114 можно осуществлять, используя, например,систему, показанную на фиг. 2 А. Эта система включает конвейер 130, принимающий исходный материал, который был обработан для уменьшения размера его частиц и необязательного уменьшения его стойкости (см. выше стадии 110 и 112) в модуле предварительной обработки исходного материала 132. Исходный материал 134 поступает в резервуар 136, который содержит жидкую среду 138, например воду,которая поступает в резервуар через снабженную клапанами трубопроводную систему (не показано на чертеже). Можно использовать систему диспергирования для повышения первоначальной дисперсности исходного материала в жидкой среда, например, как описано во временной патентной заявке США 61/296658, поданной 20 января 2010 г., полное описание которой включено в настоящий документ посредством ссылки. Осахаривающий агент поступает в резервуар из засыпной воронки 140, которая включает дозирующее устройство 142. Содержимое резервуара перемешивают, используя один или более струйных смесителей. Струйный смеситель 144 представлен схематически на фиг. 2 А; примеры подходящих струйных смесителей будут подробно описаны ниже. Струйный смеситель создает струю с помощью мотора 146, который приводит в действие насос и/или ротор (не показаны). Вращающий момент, создаваемый мотором 146, соответствует содержанию твердых веществ в смеси в резервуаре, которое, в свою очередь, отражает степень осахаривания смеси. Вращающий момент измеряют измерителем вращающего момента 14, который направляет сигнал мотору 150, который приводит в движение конвейер 130, а также дозирующему устройству 142 засыпной воронки 140. Таким образом, подачу обработанного исходного материала и фермента можно прерывать и возобновлять в зависимости от осахаривания содержимого резервуара. Измеренные данные от измерителя вращающего момента можно также использовать, чтобы регулировать струйный смеситель, например, чтобы снизить обороты смесителя, в котором используют ротор, или чтобы снизить скорость струи для смесителя, приводимого в движение насосом. Вместо или вместе с измерителем вращающего момента система может включать амперметр (не показан), который измеряет силу тока при полной нагрузке мотора. В некоторых случаях струйный смеситель может включать частотно-регулируемый электропривод (VFD), который позволяет регулировать скорость мотора. Система может также включать теплорегулятор (не показан), который измеряет температуру жидкой среды и регулирует скорость подачи исходного материала и/или условия перемешивания в ответ на увеличение температуры. Такой температурный контур обратной связи можно использовать, чтобы препятствовать жидкой среде в достижении температуры, при которой денатурируется фермент. Когда используют один или более насосов в системах, описанных в настоящем документе, как правило, предпочтительно использовать поршневые насосы прямого вытеснения (PD), например насосы кавитационного типа или винтового типа. В некоторых случаях производственное предприятие может представлять собой, например, существующий завод по производству этанола на основе зерна или на основе сахара или завод, который был переоборудован путем удаления или отключения оборудования, установленного перед системой биообработки (которое на типичном заводе по производству этанола, как правило, включает зерноприемное оборудование, молотковую дробилку, смеситель суспензии, варочное оборудование и оборудование для ожижения). Таким образом, исходный материал, полученный заводом, вводят непосредственно в обору-5 022004 дование для ферментации. Переоборудованный завод представлен схематически на фиг. 3. Использование существующего завода по производству этанола на основе зерна или на основе сахара таким способом описано в патентной заявке США 12/704521, поданной 11 февраля 2010 г., полное описание которой включено в настоящий документ посредством ссылки. В некоторых вариантах осуществления вместо того, чтобы транспортировать осахаренный исходный материал (раствор сахара) на отдельное производственное предприятие или даже отдельный резервуар, раствор сахара подвергают инокуляции и ферментации в том же резервуаре или другом сосуде для осахаривания. Ферментацию можно осуществлять в том же сосуде или можно начинать таким способом и затем завершать в процессе транспортировки, как описано выше. Осуществление осахаривания и ферментации в одном резервуаре описано во временной патентной заявке США 61/296673, поданной 20 января 2010 г., полное описание которой включено в настоящий документ посредством ссылки. Как правило, уровень кислорода в сосуде для ферментации следует контролировать, например, путем измерения уровня кислорода и вентиляции резервуара или аэрации смеси по мере необходимости. Желательно также измерять уровень этанола в сосуде, чтобы можно было остановить процесс, когда уровень этанола начинает препятствовать ферментации, например, путем нагревания или добавления бисульфита натрия. Другие способы прекращения ферментации включают добавление пероксида (например, пероксиуксусной кислоты или пероксида водорода), добавление янтарной кислоты или ее соли,охлаждение содержимого сосуда или уменьшение скорости барботирования кислорода. Можно использовать сочетания любых двух или большего числа из данных способов. Если ферментацию предстоит проводить или завершать в процессе транспортировки, сосуд для транспортировки (например, резервуар железнодорожной цистерны или автомобильной цистерны) можно оборудовать регулирующим блоком,который включает измеритель содержания кислорода, измеритель содержания этанола и систему подачи для введения бисульфита натрия (или другой прекращающей ферментацию добавки) в резервуар, и/или системой для регулирования параметров в резервуаре для прекращения ферментации. При необходимости струйное перемешивание можно использовать в процессе ферментации, и если ферментацию проводят в том же сосуде, в котором осуществляют осахаривание, можно использовать одно и то же оборудование. Однако в некоторых вариантах осуществления струйное перемешивание не является необходимым. Например, если ферментацию проводят в процессе транспортировки, движение железнодорожной цистерны или автомобильной цистерны может обеспечить соответствующее перемешивание. Перемешивание исходного материала, фермента и жидкости. Характеристики перемешивания. Ниже описаны различные типы устройств для перемешивания, и можно использовать другие устройства для перемешивания. Подходящие смесители обладают тем общим свойством, что они создают высокоскоростной циркулирующий поток, например поток тороидальной или эллиптической формы. Как правило, предпочтительные смесители обеспечивают высокую объемную скорость потока. Предпочтительные смесители создают перемешивающее действие с относительно низким потреблением энергии. Как правило, также предпочтительно, чтобы смеситель производил относительно низкое усилие сдвига и предотвращал нагревание жидкой среды, потому что усилие сдвига и/или нагревание может оказывать разрушающее действие на осахаривающий агент (или микроорганизм, например, в случае ферментации). Как будет подробно обсуждаться ниже, в некоторых предпочтительных смесителях смесь пропускают через впускное отверстие в перемешивающий элемент, который может включать ротор или лопастное колесо, и затем выводят смесь из перемешивающего элемента через выпускной наконечник. Это циркулирующее действие и высокая скорость струи, выходящей из наконечника, способствуют диспергированию материала, который остается на поверхности жидкости, или материала, который осаждается на дне резервуара, в зависимости от ориентации перемешивающего элемента. Перемешивающие элементы могут находиться в различных ориентациях, чтобы диспергировать как остающийся на поверхности, так и осаждающийся на дне материал, и ориентация перемешивающих элементов в некоторых случаях может быть регулируемой. В некоторых предпочтительных системах для перемешивания скорость v0 струи, которая соответствует окружающей текучей среде, составляет приблизительно от 2 до 300 м/с, например приблизительно от 5 до 150 м/с или приблизительно от 10 до 100 м/с. Потребляемая мощность системы для перемешивания может составлять приблизительно от 20 до 1000 кВт, например от 30 до 570 кВт, или от 50 до 500 кВт, или от 150 до 250 кВт для резервуара объемом 100000 л. Как правило, предпочтительно снижать потребляемую мощность в целях экономичности. Струйное перемешивание. Струйное перемешивание включает выпуск затопленной струи или ряда затопленных струй высокоскоростной жидкости в текучую среду, в данном случае смесь биомассы в качестве исходного материала, жидкой среды и осахаривающего агента. Струя жидкости проникает в текучую среду, при этом ее энергия рассеивается за счет турбулентности и некоторого первоначального тепла. Эта турбулентность связана с градиентами скорости (сдвиг текучей среды). Окружающая текучая среда ускоряется и увлекается в струйный поток, причем данный вторичный захваченный поток увеличивается по мере увеличения расстояния от струйного наконечника. Количество движения вторичного потока обычно остается постоянным при расширении струи до тех пор, пока поток не ударит в стенку, пол или другое препятствие. Чем дольше продолжается поток, прежде чем он ударит в какое-либо препятствие, тем больше жидкости увлекается во вторичный поток, увеличивая объемный поток в резервуаре или сосуде. Когда поток сталкивается с препятствием, вторичный поток теряет количество движения в большей или меньшей степени, в зависимости от геометрии резервуара, например, угла, под которым поток сталкивается с препятствием. Как правило, желательно ориентировать струи и/или конструировать резервуар таким образом,чтобы гидравлические потери до стенок резервуара были сведены к минимуму. Например, может оказаться желательным, чтобы резервуар имел куполообразное дно (например, куполообразный мауэрплат),и чтобы струйные смесители были ориентированы относительно близко к боковым стенкам, как показано на фиг. 22. Дно резервуара (нижний мауэрплат) может иметь любую заданную конфигурацию или может иметь эллиптическую или коническую геометрию. Струйное перемешивание отличается от большинства типов перемешивания двух жидкостей или жидкости и твердого вещества тем, что движущая сила является гидравлической, а не механической. Вместо сдвига текучей среды и продвижения ее по сосуду для перемешивания, как в случае механического смесителя, струйный смеситель продвигает текучую среду через один или более наконечников в резервуаре, создавая высокоскоростные струи, которые захватывают другую текучую среду. В результате образуется сдвиг (одной текучей среды относительно другой) и циркуляция, которые эффективно перемешивают содержимое резервуара. На фиг. 4 показано, что высокий градиент скорости между центром потока от затопленной струи и окружающей текучей средой вызывает вихри. Фиг. 4 А иллюстрирует общие характеристики затопленной струи. Когда затопленная струя расширяется в окружающую текучую среду, профиль скорости выравнивается при увеличении расстояния (х) от наконечника. Кроме того, градиент скорости dv/dr изменяется в зависимости от r (расстояние от средней линии струи) на данном расстоянии х таким образом, что создаются вихри, которые определяют зону перемешивания (коническое расширение от наконечника). В экспериментальном исследовании затопленной струи в воздухе (результаты, которые применимы к любой текучей среде, включая воду), которое провели Albertson и др. (Diffusion of Submerged Jets(Диффузия затопленных струй), статья 2409, Amer. Soc. of Civil Engineers Transactions (Материалы Американского общества инженеров гражданского строительства), 1950 г., т. 115, с. 639-697, см. с. 657), выведены безразмерные соотношения для v(x)r=0/v0 (скорость на средней линии), v(r)x/v(x)r=0 (профиль скорость при заданном х), Qx/Q0 (захват потока) и Ex/E0 (изменение энергии в зависимости от х):(1) скорость на средней линии, v(x)r=0/v0:(2) профиль скорости при любом х, v(r)x/v(х)r=0:(3) поток и энергия при любом х:Qx/Q0=0,32(x/D0) (10,21) Ех/Е 0=4,1(D0/x) (10,22),где vr=0 = скорость на средней линии затопленной струи (м/с);v0 = скорость струи во время ее выхода из наконечника (м/с); х = расстояние от наконечника (м);r = расстояние от средней линии струи (м);Qx = поток текучей среды по любой данной плоскости на расстоянии х от наконечника (м 3/с);Q0 = поток текучей среды, выходящей из наконечника (м 3/с); Е = поток энергии текучей среды по любой данной плоскости на расстоянии х от наконечника(м 3/с); Е 0 = поток энергии текучей среды, выходящей из наконечника (м 3/с).(Water Treatment Unit Processes: Physical and Chemical (Процессы в установке для обработки воды: физические и химические), David W. Hendricks, издательство CRC Press, 2006 г., с. 411) Струйное перемешивание является особенно экономичным в применении к большому объему, превышающему 1000 галлонов (378 л), и низкой вязкости, не превышающей 1000 сантипуаз (сП) (1 Нс/м 2). Как правило, в большинстве случаев также выгодно, чтобы насос или мотор струйного смесителя не был погружен, например, когда используют насос, он обычно расположен снаружи сосуда. Одно преимущество струйного перемешивания заключается в том, что температура окружающей текучей среды (помимо находящейся в непосредственной близости выпускного наконечника, где возможно некоторое местное нагревание) увеличивается лишь незначительно или не совсем не увеличивается. Например, температура может повышаться менее чем на 5 С, менее чем на 1 С или не увеличивается в какой-либо измеримой степени. Струйно-поточные смесители. Один тип струйно-поточного смесителя представлен на фиг. 4-4 А. Смесители такого типа постав-7 022004 ляет на продаже, например, фирма IKA под торговым наименованием ROTOTRON. Как показано на фиг. 4, смеситель 200 включает мотор 202, который вращает приводной вал 204. Перемешивающий элемент 206 установлен на конце приводного вала 204. Как показано на фиг. 4 А, перемешивающий элемент 206 включает кожух 208, и внутри кожуха находится лопастное колесо 210. Как показано стрелками, когда лопастное колесо вращается в своем "прямом" направлении, лопастное колесо 210 втягивает жидкость через открытый верхний край 212 кожуха и выталкивает жидкость через открытый нижний край 214. Край выходящей жидкости 214 имеет вид высокоскоростного потока или струи. Если направление вращения лопастного колеса 210 меняется на противоположное, жидкость можно втягивать через нижний край 214 и выталкивать через верхний край 212. Это можно использовать, например, для всасывания твердых веществ, которые всплывают вблизи или на поверхности жидкости в резервуаре или сосуде(следует отметить, что термины "верхний" и "нижний" относятся к ориентации смесителя на фиг. 4; смеситель можно ориентировать в резервуаре таким образом, что верхний край окажется под нижним краем). Кожух 208 включает расширяющиеся области 216 и 218 рядом с его краями. Считают, что эти расширяющиеся области способствуют тороидальному потоку, который обычно наблюдают в смесителе такого типа. Геометрия кожуха и лопастное колесо также способствуют сосредоточению потока в высокоскоростной струе при относительно низкой потребляемой мощности. Предпочтительно просвет между кожухом 208 и лопастным колесом 210 является достаточным,чтобы предотвратить чрезмерное измельчение материала во время его прохождения через кожух. Например, этот просвет может представлять собой по меньшей мере десятикратный средний размер частиц твердых веществ в смеси, предпочтительно по меньшей мере стократный. В некоторых вариантах осуществления вал 204 имеет конфигурацию, которая обеспечивает подачу газа через вал. Например, вал 204 может включать канал (не показан), через который поступает газ, и одно или более отверстий, через которые газ выходит в смесь. Эти отверстия могут находиться внутри кожуха 208, чтобы ускорять перемешивание, и/или в других местах по длине вала 204. Лопастное колесо 210 может иметь любую желательную геометрию, которая позволяет втягивать жидкость через кожух с высокой скоростью. Лопастное колесо предпочтительно представляет собой морское лопастное колесо, как показано на фиг. 4 А, но может иметь другую конструкцию, включая, например, колесо с прямыми лопастями типа Раштона (Rushton), как показано на фиг. 4 В, или модифицированное лопастное колесо типа Раштона, например, наклоненное таким образом, чтобы создавать некоторый аксиальный поток. Чтобы создавать высокоскоростной поток через кожух, мотор 202 предпочтительно представляет собой высокоскоростной мотор с высоким вращающим моментом, например, способный работать со скоростями от 500 до 20000 об/мин, например от 3000 до 10000 об/мин. Однако чем больше смеситель (например, чем больше кожух и/или чем больше мотор), тем меньше может быть скорость вращения. Таким образом, если используют большой смеситель, имеющий мощность, например, 5,10, 20 или 30 л.с. (соответственно 3,675, 7,35, 14,7 или 22,05 кВт) или выше, мотор может быть предназначен для работы с низкими скоростями вращения, например менее чем 2000 об/мин, менее чем 1500 об/мин или даже 500 об/мин или менее. Например, смеситель, предназначенный для перемешивания содержимого резервуара, имеющего объем от 10000 до 20000 л, может работать со скоростями от 900 до 1200 об/мин. Вращающий момент мотора предпочтительно является саморегулируемым, чтобы поддерживать относительно постоянную скорость лопастного колеса по мере того, как условия перемешивания изменяются с течением времени, например, вследствие осахаривания твердых веществ. В качестве преимущества, смеситель можно ориентировать под любым желательным углом или в любом положении в резервуаре, чтобы направлять поток струи в заданном направлении. Кроме того, как обсуждалось выше, в зависимости от направления вращения лопастного колеса смеситель можно использовать, чтобы втягивать текучую среду с любого края кожуха. В некоторых вариантах осуществления в сосуде располагают два или более струйных смесителя,причем один или более из них предназначены для направления струи текучей среды вверх ("нагнетание вверх"), и один или более из них предназначены для направления струи текучей среды вниз ("нагнетание вниз"). В некоторых случаях смеситель для нагнетания вверх расположен вблизи смесителя для нагнетания вниз, чтобы усилить турбулентный поток, создаваемый смесителями. При необходимости один или более смесителей можно переключать между направлением потока вверх и направлением потока вниз в процессе обработки. Может оказаться выгодным переключать все или большинство смесителей в режим нагнетания вверх во время первоначального диспергирования исходного материала в жидкой среде, особенно если исходный материал выгружают или распыляют на поверхность жидкости, так как нагнетание создает значительную турбулентность на поверхности. Нагнетание вверх можно также использовать в процессе ферментации, чтобы способствовать удалению СО 2 из жидкости, заставляя газ подниматься в виде пузырьков к поверхности, откуда его можно выводить в атмосферу. Струйные смесители с всасывающей камерой. Струйный смеситель другого типа включает первичный наконечник, который подает нагнетаемую текучую среду из насоса, всасывающее отверстие вблизи первичного наконечника, через которое окружающая текучая среда втягивается благодаря перепаду давления между первичным наконечником и бо-8 022004 лее широким отверстием, и всасывающую камеру, расположенную между всасывающим отверстием и вторичным наконечником. Высокоскоростная струя текучей среды выходит из вторичного наконечника. Пример смесителя данного типа представлен на фиг. 6. Как показано, в смесителе 600 нагнетаемая жидкость из насоса (не показан) протекает через входной канал 602 и выходит через первичный наконечник 603. Окружающая жидкость втягивается через всасывающее отверстие 604 во всасывающую камеру 606 благодаря перепаду давления, создаваемому потоком нагнетаемой жидкости. Объединенный поток выходит из всасывающей камеры в окружающую жидкость с высокой скоростью через вторичный наконечник 608. Перемешивание происходит как во всасывающей камере, так и в окружающей жидкости вследствие струйного действия выходящего потока жидкости. Система для перемешивания, которая работает согласно аналогичному принципу, представлена на фиг. 6 А. Смесители с осуществлением данной конструкции поставляет на продажу фирма ITT Water andWastewater в виде струйных смесителей под торговым наименованием Flygt. В системе 618 насос 620 создает первичный поток, который поступает в резервуар (не показан) через систему всасывающего наконечника 622. Система всасывающего наконечника 622 включает первичный наконечник 624, который действует аналогично описанному выше первичному наконечнику 603, заставляя окружающую текучую среду втягиваться в ближайший открытый конец 626 эжекторной трубы 628 вследствие перепада давления, создаваемого текучей средой, выходящей из первичного наконечника. Объединенный поток затем выходит из другого конца 630 эжекторной трубы 628, который действует в качестве вторичного наконечника, в виде высокоскоростной струи. Наконечник, показанный на фиг. 7, который называется "эдукторный наконечник", действует по аналогичному принципу. Наконечник с осуществлением данной конструкции имеется в продаже под торговым наименованием TeeJet. Как показано, в наконечнике 700 нагнетаемая жидкость втекает через входное отверстие 702 и выходит из первичного наконечника 704, втягивая окружающую текучую среду в открытый конец 706 рассеивателя 708. Объединенный поток выходит из противоположного открытого конца 710 рассеивателя при скорости циркуляционного потока А+В, которая представляет собой сумму скорости входящего потока А и скорости потока В захваченной окружающей текучей среды. Смесители струйно-аэрационного типа. Другой тип системы струйного перемешивания, который можно использовать, называют в отрасли сточных вод термином "струйно-аэрационный смеситель". В отрасли сточных вод эти смесители обычно используют для подачи струи смеси сжатого воздуха и жидкости, чтобы обеспечить аэрацию. Однако в настоящем изобретении в некоторых случаях смесители струйно-аэрационного типа используют без сжатого газа, как будет обсуждаться ниже. Для ясности принципы действия струйно-аэрационных смесителей будут вначале описаны в контексте их использования со сжатым газом. Вихревой струйный смеситель, в том числе смеситель 800, показанный на фиг. 8-8 В, включает многочисленные форсунки 802, установленные по кругу на центральной втулке 804. Радиальное расположение форсунок позволяет однородно распределять энергию перемешивания по всему резервуару. Вихревой струйный смеситель можно установить в центральном положении резервуара, как показано, чтобы обеспечить тороидальный поток вокруг центральной оси резервуара. Вихревой струйный смеситель можно установить на трубопроводе 806, который подает высокоскоростную жидкость в вихревой струйный смеситель. В варианте осуществления, показанном на фиг. 8 В, воздух также поступает в вихревой струйный смеситель через трубопровод 812. Высокоскоростная жидкость подается насосом 808, который расположен снаружи резервуара и который втягивает жидкость через входное отверстие 810 в боковой стенке резервуара. Фиг. 9 и 10 показывают два типа конфигурации наконечника, которые предназначены для перемешивания потока газа и жидкости и создания высокоскоростной струи. Эти наконечники имеют конфигурацию, которая несколько отличается от вихревого струйного смесителя, представленного на фиг. 8 и 8 А, но функционируют аналогичным образом. В системе 900, показанной на фиг. 9, первичную или движущую текучую среду направляют через жидкостную линию 902 во внутренние наконечники 904, через которые жидкость проходит с большой скоростью в область перемешивания 906. Вторая текучая среда,например газ, в том числе сжатый воздух, азот или диоксид углерода, или жидкость, поступает в область перемешивания через вторую линию 908 и захватывается движущей текучей средой, поступающей в область перешивания 906 через внутренние наконечники. В некоторых случаях вторая текучая среда представляет собой азот или диоксид углерода, чтобы уменьшить окисление фермента. Объединенный поток из двух линий нагнетают в резервуар для перемешивания через внешние наконечники 910. Если вторая текучая среда представляет собой газ, мельчайшие пузырьки захватываются жидкостью в смеси. Жидкость подается насосом в жидкостную линию 902. Газ, если его используют, подается компрессорами. Если жидкость используют в качестве второй текучей среды, он может иметь такую же скорость, как жидкость, входящая через жидкостную линию 902, или другую скорость. Фиг. 10 представляет альтернативную конструкцию наконечника 1000, в которой внешние наконечники 1010 (из которых показан только один) расположены вдоль удлиненного элемента 1011, который включает жидкостную линию 1002, расположенную параллельно второй линии 1008. Каждый нако-9 022004 нечник включает один внешний наконечник 1010 и один внутренний наконечник 1004. Перемешивание движущей жидкости со второй текучей средой происходит таким же образом, как в системе 900, описанной выше. Фиг. 11 и 12 иллюстрируют примеры системы перемешивания струйно-аэрационного типа, в которой наконечники расположены вдоль удлиненного элемента. В примере, представленном на фиг. 11,удлиненный элемент 1102 расположен вдоль диаметра резервуара 1104, и наконечники 1106 выступают в противоположных направлениях от наконечника, создавая указанный режим потока, который включает две области эллиптического в целом потока, по одной на каждой стороне центрального удлиненного элемента. В примере, представленном на фиг. 12, резервуар 1204 обычно имеет прямоугольное поперечное сечение, и удлиненный элемент 1202 расположен вдоль одной боковой стенки 1207 резервуара. В этом случае все наконечники 1206 обращены в одном направлении к противоположной боковой стенке 1209. Так образуется представленный вариант потока, в котором поток в резервуаре обычно образует эллипс вокруг главной оси, проходящей обычно по центру вдоль резервуара. В варианте осуществления,представленном на фиг. 12, наконечники могут быть наклонены к полу резервуара, например, под углом,составляющим приблизительно от 15 до 30 от горизонтали. В другом варианте осуществления, представленном на фиг. 13, наконечники 1302, 1304 и всасывающее отверстие 1306 расположены таким образом, чтобы заставить содержимое резервуара поворачиваться и вращаться в тороидальной типа пончика конфигурации вокруг центральной вертикальной оси резервуара. Поток вокруг тороидальной поверхности проходит вниз по центру резервуара, вдоль пола,вверх по стенкам и обратно в центр, создавая форму вращающейся спирали, которая очищает центр и препятствует осаждению твердых веществ. Тороидальная форма также эффективна для движения находящихся на поверхности твердых веществ в центр резервуара, где они увлекаются на дно и образуют однородную смесь с содержимым резервуара. В результате образуется спиральный режим потока, который сводит к минимуму мертвые пространства резервуара. Обратная продувка. В некоторых случаях струйные наконечники, описанные в настоящем документе, могут засоряться,что может проводить к снижению производительности и экономичности. Засорение наконечников можно устранять, направляя в противоположную сторону поток движущей жидкости через наконечник. Например, в системе, представленной на фиг. 14, это осуществляют закрытием клапана 1402 между насосом 1404 и жидкостной линией 1406, входящей в наконечники 1408, и включением вторичного насоса 410. Вторичный насос 1410 втягивает текучую среду через наконечники. Затем текучая среда поднимается по вертикальной трубе 1412 вследствие закрытия клапана 1402. Текучая среда выходит из вертикальной трубы 1412 через ее выход 1414 для рециркуляции через резервуар. Перемешивание в транспортных/перевозимых смесителях. Как отмечено выше, при необходимости осахаривание может происходить частично или полностью в процессе транспортировки смеси, например, между первым перерабатывающим предприятием для обработки исходного материала и вторым перерабатывающим предприятием для производства конечного продукта, в том числе этанола. В этом случае перемешивание можно проводить, используя струйный смеситель, предназначенный для железнодорожной цистерны или другого транспортного средства. Примеры таких смесителей будут обсуждаться ниже. Как показано схематически на фиг. 15 и 15 А, смесители 1602 и 1604 можно установить через отверстие 1606 резервуара, например, автомобильной цистерны(фиг. 15) или железнодорожной цистерны (фиг. 15 А). Смеситель может работать с использованием системы управления 1608 снаружи резервуара, которая может включать, например, мотор и/или систему подачи или сжатый воздух, в зависимости от типа используемой системы для перемешивания, и регулятор, предназначенный для регулирования работы смесителя. Может быть также предусмотрена вентиляция (не показана). Другие системы/наконечники для перемешивания. Импульсная подача воздуха/текучей среды. В альтернативном типе смесителя используют газ, поступающий в смесь в импульсном режиме. Такой смеситель представлен схематически на фиг. 15 и 15 А на примере смесителя перевозимой железнодорожной цистерны. Отмеренные количества газа под высоким давлением вводят или нагнетают в импульсном режиме под плоские круглые диски (накопительные пластины), расположенные вблизи дна резервуара. Внезапное выделение воздуха вызывает сотрясение жидкости. Когда газ выходит наружу между пластиной и полом резервуара, он счищает осевшие твердые вещества. Газ затем собирается над пластиной в большие пузыри овальной формы. Когда каждый пузырь поднимается на поверхность, он поднимает находящуюся над ним жидкость и двигает ее к периметру резервуара. Жидкость движется к стенкам резервуара и опускается по стенкам резервуара на дно. Это движение пузырей поднимает твердые вещества к поверхности и создает обычно круговую или тороидальную циркуляцию жидкости в резервуаре. Газ может представлять собой, например, воздух, азот или диоксид углерода. Резервуар снабжен вентиляционным отверстием (не показано), чтобы обеспечить выход газа из резервуара в процессе перемешивания. Низкоскоростные смесители. Фиг. 16 и 16 А иллюстрируют смесители, предназначенные для установки на валу (не показан), что- 10022004 бы осуществлять вращательное перемешивание при относительно низких скоростях. Эти смесители могут включать, например, два перемешивающих элемента 1702 (фиг. 16) или три перемешивающих элемента (фиг. 16 А), установленных на опорных ручках 1701 вокруг центральной установочной втулки 1703, которая предназначена для установки на вал. Перемешивающие элементы 1702 имеют вид усеченных конусов, каждый из которых имеет первый край 1704 и второй край 1706. Первый край имеет поперечное сечение, которое превышает поперечное сечение второго края. Перемешивающие элементы расположены таким образом, что центральные оси перемешивающих элементов находятся под углом относительно плоскости вращения перемешивающих элементов. Смеситель вращается в таком направлении, что жидкость втекает через первый край 1704 и вытекает через второй край 1706 с высокой скоростью, создавая условия динамичного потока условия образованием турбулентного потока на узком краю перемешивающего элемента. Наклон перемешивающих элементов относительно плоскости вращения приводит к созданию непрерывного замкнутого кругового потока, который рядом со стенкой соседнего резервуара или контейнера поднимается вверх и в центральной части резервуара или контейнера опускается вниз коаксиально валу смесителя, где он проходит через промежуточные пространства между опорными ручками 1701. Интенсивность этого кругового потока зависит от величины угла наклона. Смесители данного типа поставляет на продажу фирма Inotec под торговым наименованием ViscoJet. Существуют складные смесители, которые можно устанавливать в железнодорожной цистерне или другом контейнере для перевозки. Аналогичный тип смесителя описан в патенте США 6921194, полное описание которого включено в настоящий документ посредством ссылки. Сведение к минимуму удерживания на стенках резервуара. В некоторых ситуациях, в частности, когда содержание твердых веществ приближается к теоретическому или практическому пределу, материал может накапливаться на боковой стенке и/или донной стенке резервуара в процессе перемешивания. Это явление, так называемое "удерживание" является нежелательным, потому что оно может приводить к недостаточному перемешиванию. Можно предпринять ряд мер, которые сводят к минимуму удерживание и обеспечивают хорошее перемешивание во всем резервуаре. Например, помимо устройства (устройств) для струйного перемешивания, резервуар можно оборудовать скребком, например скребком, имеющим лезвие, которое очищает боковую стенку резервуара,как резиновый валик для удаления влаги. Такие устройства хорошо известны, например, в молочной промышленности. Подходящие смесители включают смесители с боковой и донной очисткой и смесители со скребковыми лезвиями, которые производит фирма Walker Engineered Products (Новый Лиссабон,штат Висконсин). Как показано на фиг. 18, смеситель с боковым и донным скребком 1800 может включать центральный удлиненный элемент 1802, установленный для вращения вокруг оси резервуара. Лезвия скребка для боковых стенок 1804 установлены на каждом конце удлиненного элемента 1802 и расположены под углом относительно удлиненного элемента. В представленном варианте осуществления пара лезвий скребка для нижней стенки 1806 установлена в промежуточном положении на удлиненном элементе 1802, чтобы счищать материал, накапливающийся на дне резервуара. Эти скребки можно не устанавливать, если материал не скапливается на дне резервуара. Как показано на фиг. 18 А, лезвия скребка 1804 могут быть в виде множества скребковых элементов, расположенных вдоль боковой стенки. В других вариантах осуществления лезвия скребка являются непрерывными или могут иметь любую другую желательную геометрию. В других вариантах осуществления сам струйный смеситель имеет такую конфигурацию, которая сводит удерживание к минимуму. Например, струйный смеситель может включать одну или более подвижных головок и/или гибких частей, которые движутся в процессе перемешивания. Например, струйный смеситель может включать удлиненный вращающийся элемент, имеющий множество форсунок по своей длине. Этот удлиненный элемент может быть плоским, как показано на фиг. 19, или иметь неплоскую форму, которая, например, может соответствовать форме стенок резервуара, как показано на фиг. 20. Как показано на фиг. 19, наконечники струйного смесителя могут быть расположены на вращающемся удлиненном элементе 1900, который приводят в движение мотор 1902 и вал 1904. Воду или другую текучую среду нагнетают через каналы во вращающемся элементе, например, с помощью лопастного колеса насоса 1906, и она выходит в виде множества струй через отверстия форсунок 1908 во время вращения элемента 1900. Чтобы уменьшить удерживание на боковых стенках резервуара, можно предусмотреть отверстия 1910 на концах элемента 1900. В варианте осуществления, представленном на фиг. 20, чтобы соответствовать определенной форме резервуара 2000, удлиненный элемент включает горизонтально вытянутые ручки 2002, наклоненные вниз части 2004, наклоненные наружу и внутрь части 2006 и вертикально выступающие части 2008. Текучую среду нагнетают через каналы в удлиненном элементе к множеству отверстий форсунок 38, через которые выходят струи во время вращения удлиненного элемента. В обоих вариантах осуществления, представленных на фиг. 19 и 20, струи обеспечивают перемеши- 11022004 вание и одновременно также омывают боковые стенки резервуара. В других вариантах осуществления струйный смеситель может включать гибкие элементы и/или регулируемые элементы (например, сгибающиеся или выдвигающиеся трубки), через которые поступают струи. Например, как показано схематически на фиг. 21 и 21 А, устройство для струйного перемешивания может состоять из гибких трубок, аналогичных плавающему устройству для очистки бассейнов, например, как описано в патенте США 3883368. В представленной системе 2100 гибкий питающий шланг 2102 подает текучую среду из входного отверстия 2104 в боковой стенке резервуара 2106. Питающий шланг 2102 вытянут на поверхность жидкости в резервуаре с помощью ряда буйков 2108 и шарнирных соединений 2110. Множество гибких шлангов 2112 прикреплены своими верхними концами к раздельным тройниковым соединениям 2114 в плавающей части питающего шланга 2102. Текучую среду нагнетают из открытых удаленных концов гибких шлангов 2112, что приводит к перемешиванию содержимого резервуара и удалению отложений на боковых стенках резервуара. В некоторых вариантах осуществления можно использовать сочетания описанных выше конструкций. Например, можно использовать сочетания плоских и неплоских вращающихся или колеблющихся удлиненных элементов. Описанные выше расположения подвижных наконечников можно использовать в сочетании друг с другом и/или в сочетании со скребками. Можно использовать совместно множество расположений подвижных наконечников, например, два или более вращающихся элементов, представленных на фиг. 19, можно вертикально расположить рядом в резервуаре. Когда используют множество вращающихся элементов, их можно предназначать для вращения в одном направлении или в противоположных направлениях, с одинаковой скоростью или с различными скоростями. Материалы. Материалы биомассы. Биомасса может представлять собой, например, целлюлозный или лигноцеллюлозные материал. К таким материалам относятся бумага и бумажные изделия (например, бумага с многослойным покрытием и крафт-бумага), древесина и содержащие древесину материалы, например древесно-стружечные плиты травы, рисовая шелуха, выжимки, джут, конопля, лен, бамбук, мексиканская агава, манильская пенька,солома, просо прутьевидное, люцерна, сено, стержни кукурузных початков, кукурузная солома, кокосовые волокна; источники волокна с высоким содержанием -целлюлозы, например хлопок. Исходные материалы можно получить из обрывков не бывших в употреблении текстильных материалов, например остатков, или они могут представлять собой бывшие в употреблении отходы, например ветошь. Когда бумажные изделия используют в качестве источников волокна, они могут представлять собой не бывшие в употреблении материалы, например, обрывки не бывших в употреблении материалов, или они могут представлять собой бывшие в употреблении отходы. Помимо не бывших в употреблении исходных материалов, бывшие в употреблении, промышленные (например, побочные продукты переработки) и технологические отходы (например, стоки от переработки бумаги) можно также использовать в качестве источников волокна. Кроме того, биомассу в качестве исходного материала можно получать или извлекать из отходов жизнедеятельности человека (например, стоков) и отходов животного или растительного происхождения. Дополнительные источники волокна описаны в патентах США 6448307, 6258876,6207729, 5973035 и 5952105. В некоторых вариантах осуществления материал биомассы включает углевод, который представляет собой или включает материал, содержащий одну или более -1,4-связей и имеющий среднечисленную молекулярную массу, составляющую приблизительно от 3000 до 50000. Такой углевод представляет собой или включает целлюлозу (I), которая получена из -глюкозы (1) посредством конденсации (1,4)гликозидных связей. Эта связь отличается от (1,4)-гликозидных связей, присутствующих в крахмале и других углеводах. Крахмальные материалы включают сам крахмал, например кукурузный крахмал, пшеничный крахмал, картофельный крахмал или рисовый крахмал, производное крахмала, или материал, который включает крахмал, в том числе съедобный пищевой продукт или сельскохозяйственный продукт. Например,- 12022004 крахмальным материалом может быть арракача, гречиха, банан, ячмень, маниока, кудзу, кислица клубневая, саго, сорго, обыкновенный картофель, сладкий картофель, таро, ямс или одно или более бобовых растений, в том числе бобы, чечевица или горох. Смеси любых двух или более крахмальных материалов также представляют собой крахмальные материалы. В некоторых случаях биомасса представляет собой микробный материал. Микробные источники включают, но не ограничиваются этим, любой встречающийся в природе или генетически модифицированный микроорганизм или организм, который содержит или способен обеспечивать источник углеводов(например, целлюлоза), например, протисты (одноклеточные), например животные протисты (например,простейшие, в том числе жгутиковые, амебовидные, инфузории и споровики) и растительные протисты(например, водоросли, в том числе ячеистые, хлорарахниофиты, криптомонады, эвглениды, глаукофиты,гаптофиты, красные водоросли, страменофилы и зеленые растения). Другие примеры включают морские водоросли, планктон (например, макропланктон, мезопланктон, микропланктон, нанопланктон, пикопланктон и фемптопланктон), фитопланктон, бактерии (например, грамположительные бактерии, грамотрицательные бактерии и экстремофилы), дрожжи и/или их смеси. В некоторых случаях микробную биомассу можно получить из натуральных источников, например океанов, озер, других водоемов, содержащих, например, соленую воду или пресную воду, или на суше. В качестве альтернативы или дополнительно, микробную биомассу можно получить из систем культур, например крупномасштабных сухих и влажных систем культур. Осахаривающие агенты. Подходящие ферменты включают целлобиазы и целлюлазы, способные разлагать биомассу. Подходящие целлобиазы включают целлобиазу из Aspergillus niger, которую продают под торговым наименованием NOVOZYME 188. Целлюлазы способны разлагать биомассу и могут быть грибкового или бактериального происхождения. Подходящие ферменты включают Можно использовать комплексные ферменты, в том числе те, которые поставляет фирма Genencor под торговым наименованием Accellerase, например комплексный фермент Accellerase 1500. Ком- 13022004 плексный фермент Accellerase 1500 обладает многофункциональной ферментативной активностью,действуя, главным образом, как экзоглюканаза, эндоглюканаза (2200-2800 единиц СМС/г), гемицеллюлаза и -глюкозидаза (525-775 единиц pNPG/r), и имеет значение рН от 4,6 до 5,0. Активность комплексного фермента в качестве эндоглюканазы выражена в единицах активности по отношению к карбоксиметилцеллюлозе (единицы CMC), в то время как его активность в качестве -глюкозидазы выражена в единицах активности по отношению к пара-нитрофенил-пара-D-глюкопиранозиду (единицы pNPG). В одном варианте осуществления используют смесь комплексного фермента Accellerase 1500 и целлобиазыNOVOZYME 188. В некоторых вариантах осуществления осахаривающий агент включает кислоту, например минеральную кислоту. Когда используют кислоту, возможно образование побочных продуктов, которые являются токсичными для микроорганизмов, и в таком случае способ может дополнительно включать удаление указанных побочных продуктов. Их удаление можно осуществлять, используя активированный уголь, например активированный древесный уголь, или другие подходящие способы. Ферментационные агенты. В ферментации используют микроорганизм(ы), которые могут представлять собой природные микроорганизмы или генетически модифицированные микроорганизмы. Например, микроорганизм может представлять собой бактерию, например целлюлитическую бактерию, грибок, например дрожжи, растение или протист, например водоросль, простейшее или грибкоподобный протист, например слизевик(миксомицет). Когда организмы являются совместимыми, можно использовать смеси организмов. Подходящие для ферментации микроорганизмы обладают способностью конвертировать углеводы,в том числе глюкозу, ксилозу, арабинозу, маннозу, галактозу, олигосахариды или полисахариды, в продукты ферментации. Ферментирующие микроорганизмы включаютGert Strand AB (Швеция); и FERMOL, поставщик DSM Specialties. В ферментации можно также использовать бактерии, например Zymomonas mobilis и Clostridiumthermocellum (Philippidis, 1996 г., см. выше). Добавки. Антибиотики. Хотя обычно предпочитают получать высокую концентрацию сахара в осахаренном растворе, можно использовать и менее высокие концентрации можно использовать, и в таком случае может оказаться желательным введение антимикробной добавки, например антибиотика широкого действия, в низкой концентрации, например от 50 до 150 м.д. Другие подходящие антибиотики включают амфотерицин В,ампициллин, хлорамфеникол (левомицетин), ципрофлоксацин, гентамицин, гигромицин В, канамицин,неомицин, пенициллин, пуромицин, стрептомицин. Антибиотики будут ингибировать рост микроорганизмов во время транспортировки и хранения, и их можно использовать в соответствующих концентрациях, составляющих, например от 15 до 1000 мас. м.д., например от 25 до 500 м.д. или от 50 до 150 м.д. При необходимости антибиотик можно добавлять, даже если концентрация сахара является относительно высокой. Поверхностно-активные вещества. Добавление поверхностно-активных веществ может увеличивать скорость осахаривания. Примеры поверхностно-активных веществ включают неионные поверхностно-активные вещества, в том числе поверхностно-активные вещества на основе полиэтиленгликоля Tween 20 или Tween 80, ионные поверхностно-активные вещества или амфотерные поверхностно-активные вещества. Другие подходящие поверхностно-активные вещества включают октилфенолэтоксилаты, в том числе неионные поверхност- 14022004 но-активные вещества серии TRITON X, которые поставляет на продажу фирма Dow Chemical. Можно также добавлять поверхностно-активное вещество, чтобы сохранять образующийся в растворе сахар,особенно в высококонцентрированных растворах. Среда осахаривания. В одном варианте осуществления среда содержит компоненты в следующих концентрациях: Физическая обработка исходного материала. В некоторых вариантах осуществления исходный материал подвергают физической обработке перед осахариванием и/или ферментацией. Процессы физической обработки, которые можно использовать для изменения морфологии материала биомассы и/или функционализации материала, могут включать один или более из тех, которые описаны в настоящем документе, в том числе механическую обработку,химическую обработку, облучение, ультразвуковую обработку, окисление, пиролиз или паровой взрыв. Способы обработки можно использовать в виде сочетания двух, трех, четырех или даже всех данных технологий (в любом порядке). Когда используют более чем один способ обработки, эти способы можно использовать в одно и то же время или в различные сроки. Другие способы, которые изменяют молекулярную структуру биомассы как исходного материала, можно также использовать как индивидуально,так и в сочетании со способами, описанными в настоящем документе. Механическая обработка. В некоторых случаях способы могут включать механическую обработку исходного материала биомассы. Виды механической обработки включают, например, резку, измельчение, прессование, дробление, деформирование и рубку. Измельчение может включать, например, шаровой, молотковый, роторный/статорный сухой или мокрый помол, или другие виды измельчения. Другие виды механической обработки включают, например, измельчение жерновами, растрескивание, механическую резку или разрывание, стержневое шлифование или воздушный дисковый помол. Механическая обработка может иметь преимущество для "подготовки", "напряжения", измельчения и дробления целлюлозных или лигноцеллюлозных материалов, делая целлюлозу материалов более восприимчивой к расщеплению цепи и/или уменьшению степени кристалличности. Подготовленные материалы могут также быть более восприимчивыми к окислению в случае облучения. В некоторых случаях механическая обработка может включать первоначальную подготовку полученного исходного материала, например, измельчение материалов, в том числе посредством резки, дробления, помола, распыления или рубки. Например, в некоторых случаях рыхлый исходный материал (например, вторичная бумага, крахмальные материалы или просо прутьевидное) подготавливают резкой или измельчением. В качестве альтернативы или дополнительно, исходный материал можно сначала физически обрабатывать одним или несколькими из числа других физических способов обработки, включая, например,химическую обработку, излучение, ультразвуковую обработку, окисление, пиролиз или паровой взрыв, и затем механически обрабатывать. Такая последовательность может иметь преимущество, так как материалы, обработанные одним или более способами, включая, например, облучение или пиролиз, склонны к большей хрупкости и, следовательно, может оказаться более легким внесение дальнейших изменений в молекулярную структуру материала посредством механической обработки. В некоторых вариантах осуществления исходный материал биомассы является волокнистым, и механическая обработка включает резку, чтобы открыть волокна волокнистого материала. Резку можно осуществлять, например, используя устройство для резания с дисковыми лезвиями. Другие способы механической обработки биомассы включают, например, помол или дробление. Помол можно осуществлять, используя, например, молотковую мельницу, шаровую мельницу, коллоидную мельницу, коническую или конусную мельницу, дисковую мельницу, бегунковую мельницу, мельницу марки Wiley или зерновую мельницу. Дробление можно осуществлять, используя, например, жерновую дробилку, стержневую дробилку, кофейную дробилку или жерновую мельницу. Дробление можно осуществлять, например, с помощью возвратно-поступательного стержня или другого элемента, как в случае стержневой мельницы. Другие механические способы обработки включают механическое резание или разрывание,другие способы, в которых к материалу прилагают давление, и воздушный дисковый помол. Подходящие виды механической обработки дополнительно включают любые другие способы, которые изменяют молекулярную структуру исходного материала. При желании механически обработанный материал можно пропускать через сито, например, имеющее средний размер отверстий, составляющий 1,59 мм или менее (1/16 дюйма, 0,0625 дюйма). В некоторых вариантах осуществления резку или другую механическую обработку и просеивание осуществля- 15022004 ют одновременно. Например, резак с дисковыми лезвиями можно использовать для одновременной резки и просеивания исходного материала. Исходный материал режется между неподвижными лезвиями и вращающимися лезвиями, производя измельченный материал, который проходит сквозь сито и собирается в бункере. Целлюлозный или лигноцеллюлозный материал можно механически обрабатывать в сухом состоянии (например, при небольшом или нулевом содержании воды на его поверхности), в гидратированном состоянии (например, при содержании до 10 мас.% абсорбированной воды) или во влажном состоянии,например, при содержании от приблизительно 10 до приблизительно 75 мас.% воды. Источник волокон можно даже механически обрабатывать в состоянии частичного или полного погружения в жидкость,включая воду, этанол или изопропанол. Целлюлозный или лигноцеллюлозный материал можно также механически обрабатывать в среде газа (например, в потоке или атмосфере газа, который не является воздухом), например кислорода или азота, или пара. При необходимости лигнин можно удалять из любого из волокнистых материалов, которые включают лигнин. Кроме того, чтобы способствовать разложению материалов, которые включают целлюлозу,материал можно обрабатывать до или во время механической обработки или облучения, используя тепло, химическое вещество (например, минеральную кислоту, основание или сильный окислитель, в том числе гипохлорит натрия) и/или фермент. Например, измельчение можно осуществлять в присутствии кислоты. Механическая обработка системы может быть приспособлена для образования потоков с определенными морфологическими характеристиками, включая, например, удельную поверхность, пористость,объемную плотность и, в случае волокнистых исходных материалов, характеристики волокна, в том числе отношение длины к ширине. В некоторых вариантах осуществления удельная поверхность по методу Брунауэра-Эммета-Теллера(BET) механически обработанного материала составляет более чем 0,1 м 2/г, например более чем 0,25,более чем 0,5, более чем 1,0, более чем 1,5, более чем 1,75, более чем 5,0, более чем 10, более чем 25,более чем 35, более чем 50, более чем 60, более чем 75, более чем 100, более чем 150, более чем 200 или даже более чем 250 м 2/г. Пористость механически обработанного материала может составлять, например, более чем 20%,более чем 25, более чем 35, более чем 50, более чем 60, более чем 70, более чем 80, более чем 85, более чем 90, более чем 92, более чем 94, более чем 95, более чем 97,5, более чем 99 или даже более чем 99,5%. В некоторых вариантах осуществления после механической обработки материал имеет объемную плотность, составляющую менее чем 0,25 г/см 3, например 0,20, 0,15, 0,10, 0,05 г/см 3 или менее, например 0,025 г/см 3. Объемную плотность определяют, используя американский стандартный метод испытанийASTM D1895B. Вкратце, этот способ включает наполнение образцом мерного цилиндра известного объема и измерение массы данного образца. Объемную плотность вычисляют делением массы образца в граммах на известный объем цилиндра в кубических сантиметрах. Если исходный материал представляет собой волокнистый материал, волокна механически обработанного материала могут иметь относительно большое среднее отношение длины к диаметру (например,более чем 20/1), даже если их резали более чем однократно. Кроме того, волокна волокнистых материалов, описанных в настоящем документе, могут иметь относительно узкое распределение длины и/или отношения длины к диаметру. При использовании в настоящем документе средние значения ширины волокна (например, диаметры) представляют собой значения, определенные оптическим способом при случайном выборе приблизительно 5000 волокон. Средние значения длины волокна представляют собой исправленные значения взвешенной по длине длины. Значения удельной поверхности по методу BET представляют собой многоточечные значения удельной поверхности, и значения пористости представляют собой значения, определенные методом ртутной порометрии. Если исходный материал представляет собой волокнистый материал, среднее отношение длины к диаметру волокон механически обработанного материала может составлять, например, более чем 8/1,например более чем 10/1, более чем 15/1, более чем 20/1, более чем 25/1 или более чем 50/1. Средняя длина волокна механически обработанного материала может составлять, например, приблизительно от 0,5 до 2,5 мм, например, приблизительно от 0,75 до 1,0 мм, и средняя ширина (например, диаметр) второго волокнистого материала 14 может составлять, например, приблизительно от 5 до 50 мкм, например,приблизительно от 10 до 30 мкм. В некоторых вариантах осуществления, если исходный материал представляет собой волокнистый материал, стандартное отклонение длины волокна механически обработанного материала может составлять менее чем 60% средней длины волокна механически обработанного материала, например, менее чем 50% средней длины, менее чем 40% средней длины, менее чем 25% средней длины, менее чем 10% средней длины, менее чем 5% средней длины или даже менее чем 1% средней длины. В некоторых ситуациях может оказаться желательным приготовление материала с низкой объемной плотностью, уплотнение материала (например, чтобы сделать более простой и менее дорогостоящей его транспортировку в другое место) и последующее возвращение материала в состояние с пониженной объемной плотностью. Уплотненные материалы можно обрабатывать любыми из способов, описанных в настоящем документе, или любой материал, обработанный любыми из способов, описанных в настоящем документе, можно затем уплотнять, например, как описано в патентной заявке США 12/429045 и в международной патентной заявкеWO 2008/073186, полные описания которых включены в настоящий документ посредством ссылки. Обработка излучением. Можно использовать одну или более методик обработки излучением для обработки исходного материала и получить структурно модифицированный материал, который служит в качестве сырья для дальнейших технологических стадий и/или последовательностей операций. Облучение может, например,уменьшить молекулярную массу и/или кристалличность исходного материала. Излучением можно также стерилизовать материалы или любую среду, требуемую для биологической обработки материала. В некоторых вариантах осуществления на материал воздействует энергия, которая выбивает электрон с его атомной орбитали и используется для облучения материалов. Излучение могут создавать (1) тяжелые заряженные частицы, в том числе альфа-частицы или протоны, (2) электроны, образующиеся,например, при бета-распаде или в ускорителях электронного пучка, или (3) электромагнитное излучение,например гамма-излучение, рентгеновское излучение или ультрафиолетовое излучение. В одном подходе излучение, производимое радиоактивными веществами, можно использовать для облучения исходного материала. В другом подходе электромагнитное излучение (например, полученное с помощью генераторов электронного пучка) можно использовать для облучения исходного материала. В некоторых вариантах осуществления можно использовать любое сочетание способов (1)-(3), применяемых в любом порядке или одновременно. Используемые дозы облучения зависят от желательного эффекта и конкретного исходного материала. В некоторых случаях, когда желательно расщепление цепи и/или желательна функционализация цепи полимера, можно использовать более тяжелые частицы, чем электроны, в том числе протоны, ядра гелия, ионы аргона, ионы кремния, ионы неона, ионы углерода, ионы фосфора, ионы кислорода или ионы азота. Когда желательно расщепление цепи с раскрытием цикла, можно использовать положительно заряженные частицы вследствие их свойств кислоты Льюиса для ускорения расщепления цепи с раскрытием цикла. Например, когда желательно максимальное окисление, можно использовать ионы кислорода,и когда желательно максимальное нитрование, можно использовать ионы азота. Использование тяжелых частиц и положительно заряженных частиц описано в патентной заявке США 12/417699, полное описание которой включено в настоящий документ посредством ссылки. В одном способе первый материал, который представляет собой или включает целлюлозу, имеющую среднечисленную молекулярную массу (MN1), облучают, например, путем воздействия ионизирующего излучения (например, в виде гамма-излучения, рентгеновского излучения, ультрафиолетового (УФ) света с длиной волны от 100 до 280 нм, пучка электронов или других заряженных частиц), чтобы получить второй материал, который включает целлюлозу, имеющую вторую среднечисленную молекулярную массу (MN2), которая составляет менее чем первая среднечисленная молекулярная масса. Второй материал (или первый и второй материалы) можно сочетать с микроорганизмом (с применением или без применения ферментативной обработки), который может использовать второй и/или первый материал или содержащиеся в нем сахара или лигнин для получения промежуточного или конечного продукта, в том числе тех, которые описаны в настоящем документе. Так как второй материал включает целлюлозу, имеющую меньшую молекулярную массу по сравнению с первым материалом, и в некоторых случаях, также и меньшую степень кристалличности, второй материал обычно лучше диспергируется, набухает и/или растворяется, например, в растворе, содержащем микроорганизм и/или фермент. Эти свойства делают второй материал легче обрабатываемым и более восприимчивым к химическому, ферментативному и/или биологическому воздействию по сравнению с первым материалом, что может значительно повышать скорость производства и/или уровень производства целевого продукта, например этанола. В некоторых вариантах осуществления вторая среднечисленная молекулярная масса (MN2) ниже,чем первая среднечисленная молекулярная масса (MN1) более чем на приблизительно 10%, например более чем на приблизительно 15, 20, 25, 30, 35, 40, 50, 60% или даже более чем на приблизительно 75%. В некоторых случаях второй материал включает целлюлозу, которая имеет кристалличность (С 2),которая ниже, чем кристалличность (C1) целлюлозы первого материала. Например, значение С 2 может быть ниже, чем значение C1, более чем на приблизительно 10%, например более чем на приблизительно 15, 20, 25, 30, 35, 40 или даже более чем на приблизительно 50%. В некоторых вариантах осуществления исходный индекс кристалличности (до облучения) составляет от приблизительно 40 до приблизительно 87,5%, например от приблизительно 50 до приблизительно 75% или от приблизительно 60 до приблизительно 70%, и индекс кристалличности после облучения составляет от приблизительно 10 до приблизительно 50%, например от приблизительно 15 до приблизительно 45% или от приблизительно 20 до приблизительно 40%. Однако в некоторых вариантах осуществления, например после высокой дозы облучения, можно получить индекс кристалличности, составляю- 17022004 щий менее чем 5%. В некоторых вариантах осуществления материал после облучения является практически аморфным. В некоторых вариантах осуществления исходная среднечисленная молекулярная масса (до облучения) составляет от приблизительно 200000 до приблизительно 3200000, например от приблизительно 250000 до приблизительно 1000000 или от приблизительно 250000 до приблизительно 700000, и среднечисленная молекулярная масса после облучения составляет от приблизительно 50000 до приблизительно 200000, например от приблизительно 60000 до приблизительно 150000 или от приблизительно 70000 до приблизительно 125000. Однако в некоторых вариантах осуществления, например после высокой дозы облучения, можно получить среднечисленную молекулярную массу, составляющую менее чем приблизительно 10000 или даже менее чем приблизительно 5000. В некоторых вариантах осуществления второй материал может иметь уровень окисления (О 2), который выше, чем уровень окисления (О 1) первого материала. Более высокий уровень окисления материала может способствовать возможности его диспергирования, набухания и/или растворения, дополнительно повышая восприимчивость материала к химическому, ферментативному или биологическому воздействию. В некоторых вариантах осуществления для увеличения уровня окисления второго материала по сравнению с первым материалом облучение осуществляют в окислительной среде, например, в атмосфере воздуха или кислорода, получая второй материал, который является более окисленным, чем первый материал. Например, второй материал может иметь больше гидроксильных групп, альдегидных групп, кетонных групп, сложноэфирных групп или карбоксильных групп, что может повысить его гидрофильность. Ионизирующее излучение. Каждый вид излучения ионизирует углеродсодержащий материал посредством определенного взаимодействия, которое определяет энергия излучения. Тяжелые заряженные частицы ионизируют вещество, главным образом, посредством кулоновского рассеяния; кроме того, в этих взаимодействиях образуются высокоэнергетические электроны, которые могут дополнительно ионизировать вещество. Альфачастицы представляют собой ядра атомов гелия и образуются при альфа-распаде ядер различных радиоактивных элементов, включая изотопы висмута, полония, астата, радона, франция, радия, ряда актинидов, включая актиний, торий, уран, нептуний, кюрий, калифорний, америций и плутоний. Когда используют частицы, они могут быть нейтральными (незаряженными), положительно заряженными или отрицательно заряженными. Когда частицы являются заряженными, они могут нести единичный положительный или отрицательный заряд кратные заряды, например единичный, двойной, тройной или даже четверной или более высокие заряды. В тех случаях, где желательно расщепление цепи,могут оказаться желательными положительно заряженные частицы, отчасти вследствие своей кислотной природы. Когда используют частицы, эти частицы могут иметь массу покоя электрона или более высокую массу, которая, например, в 500, 1000, 1500, 2000, 10000 или даже 100000 раз превышает массу покоя электрона. Например, частицы могут иметь массу, составляющую от приблизительно 1 атомной единицы до приблизительно 150 атомных единиц, например, от приблизительно 1 атомной единицы до приблизительно 50 атомных единиц, или от приблизительно 1 до приблизительно 25, например 1, 2, 3, 4, 5,10, 12 или 15 атомных единиц. Ускорители, используемые для ускорения частиц, могут представлять собой электростатические ускорители постоянного тока, электродинамические ускорители постоянного тока, радиочастотные линейные, магнитно-индукционные линейные или непрерывно-волновые устройства. Например, ускорители типа циклотрона поставляет фирма IBA (Бельгия), включая систему Rhodotron, в то время как ускорители постоянного тока поставляет фирма RDI (в настоящее время IBA Industrial), включая Dynamitron. Ионы и ионные ускорители обсуждаются в работах Introductory Nuclear(Обзор по терапии пучком легких ионов), конференция ICRU-IAEA, Колумбус, штат Огайо, 18-20 марта 2006 г.; Iwata, Y. и др. Alternating-Phase-Focused IH-DTL for Heavy-ion Medical Accelerators (Сфокусированный пролетно-трубчатый линейный ускоритель типа Н с чередующимися фазами для медицинских ускорителей тяжелых ионов), материалы ЕРАС 2006 г., Эдинбург (Шотландия); и Leaner, С.М. и др., Status of the Superconducting ECR Ion Source VENUS (Состояние сверхпроводящего электронного циклотронного резонансного источника ионов VENUS), материалы ЕРАС 2000 г., Вена (Австрия). Гамма-излучение имеет преимущество значительной глубины проникновения в разнообразные материалы. Источники гамма-излучения включают ядра радиоактивных элементов, в том числе изотопы кобальта, кальция, технеция, хрома, галлия, индия, йода, железа, криптона, самария, селена, натрия и ксенона. Источники рентгеновского излучения включают столкновение электронного пучка с металлическими мишенями, изготовленными, в том числе, из вольфрама или молибдена или сплавов, или компактные источники света, в том числе те, которые производит фирма Lyncean. Источники ультрафиолетового излучения включают дейтериевые или кадмиевые лампы. Источники инфракрасного излучения включают керамические лампы с окном из сапфира, цинка или селенида. Источники микроволнового излучения включают клистроны, радиочастотные источники типа Слевина (Slevin) или источники атомных пучков, которые используют газы, в том числе водород, кислород или азот. В некоторых вариантах осуществления пучок электронов используют в качестве источника излучения. Пучок электронов имеет преимущества высокой мощности дозы (например, 1, 5 или даже 10 Мрад в секунду), высокой производительности, меньшего объема и меньшего содержания оборудования. Электроны могут также оказаться более эффективными в реакциях расщепления цепи. Кроме того, электроны, обладающие энергией от 4 до 10 МэВ, могут иметь глубину проникновения от 5 до 30 мм или более,в том числе 40 мм. Электронные пучки можно создавать, используя, например, электростатические генераторы, каскадные генераторы, генераторы-трансформаторы, низкоэнергетические ускорители с системой сканирования, низкоэнергетические ускорители с линейным катодом, линейные укорители и импульсные ускорители. Электроны в качестве источника ионизирующего излучения могут быть полезны, например, для относительно тонких срезов материала, например, менее чем 0,5 дюйма, например менее чем 0,4, 0,3, 0,2 или менее чем 0,1 дюйма (12,7, 10,16, 7,62, 5,08 или 2,54 мм соответственно). В некоторых вариантах осуществления энергия каждого электрона в электронном пучке составляет от приблизительно 0,3 до приблизительно 2,0 МэВ (миллионов электрон-вольт), например от приблизительно 0,5 до приблизительно 1,5 МэВ или от приблизительно 0,7 до приблизительно 1,25 МэВ. Устройства для облучения электронным пучком могут серийно производить фирмы Ion Beam Applications (Лувэ-ла-Нев, Бельгия) или Titan Corporation (Сан-Диего, штат Калифорния). Типичные энергии электронов могут составлять 1,2, 4,5, 7,5 или 10 МэВ. Типичная мощность устройства для облучения электронным пучком может составлять 1, 5, 10, 20, 50, 100, 250 или 500 кВт. Уровень деполимеризации исходного материала зависит от используемой энергии электронов и применяемой дозы, в то время как время облучения зависит от мощности и дозы. Типичные дозы могут принимать значения, составляющие 1, 5, 10, 20, 50, 100 или 200 кГр(килогрэй). Пучки ионных частиц. Можно использовать более тяжелые частицы, чем электроны, чтобы облучать материалы, в том числе углеводы или материалы, которые включают углеводы, например, целлюлозные материалы, лигноцеллюлозные материалы, крахмальные материалы или смеси любых данных и других веществ, описанных в настоящем документе. Например, можно использовать протоны, ядра гелия, ионы аргона, ионы кремния, ионы неона, ионы углерода, ионы фосфора, ионы кислорода или ионы азота. В некоторых вариантах осуществления частицы тяжелее электронов могут вызывать более значительное расщепление цепи (по сравнению с частицами меньшей массы). В некоторых случаях положительно заряженные частицы могут производить более значительное расщепление цепи, чем отрицательно заряженные частицы,вследствие своей кислотности. Пучки более тяжелых частиц можно создавать, например, используя линейные ускорители или циклотроны. В некоторых вариантах осуществления энергия каждой частицы в пучке составляет от 1,0 до приблизительно 6000 МэВ/ат.ед., например от приблизительно 3 до приблизительно 4,800 МэВ/ат.ед. или от приблизительно 10 до приблизительно 1000 МэВ/ат.ед. (атомная единица). В определенных вариантах осуществления ионные пучки, используемые для облучения углеродсодержащих материалов, например материала биомассы, могут включать ионы более чем одного типа. Например, ионные пучки могут включать смеси ионов двух или более (например, трех, четырех или более) различных типов. Примерные смеси могут включать ионы углерода и протоны, ионы углерода и ионы кислорода, ионы азота и протоны, и ионы железа и протоны. В более общем случае смеси любых указанных выше ионов (или любых других ионов) можно использовать для создания облучающих ионных пучков. В частности, смеси относительно легких и относительно тяжелых ионов можно использовать в одном ионном пучке. В некоторых вариантах осуществления ионные пучки для облучения материалов включают положительно заряженные ионы. Положительно заряженные ионы могут включать, например, положительно заряженные ионы водорода (например, протоны), ионы инертных газов (включая, например, гелий, неон,аргон), ионы углерода, ионы азота, ионы кислорода, ионы кремния, ионы фосфора и ионы металлов, в том числе ионы натрия, ионы кальция и/или ионы железа. Без намерения следовать какой-либо теории,считают, что указанные положительно заряженные ионы проявляют химические свойства кислот Льюиса при воздействии на материалы, инициируя и поддерживая реакции катионного расщепления цепи с раскрытием цикла в окислительной среде. В определенных вариантах осуществления ионные пучки для облучения материалов включают отрицательно заряженные ионы. Отрицательно заряженные ионы могут включать, например, отрицательно заряженные водород ионы (например, гидрид-ионы) и отрицательно заряженные ионы различных относительно электроотрицательных ядер (например, ионы кислорода, ионы азота, ионы углерода, ионы кремния и ионы фосфора). Без намерения следовать какой-либо теории, считают, что такие отрицательно заряженные ионы проявляют химические свойства оснований Льюиса при воздействии на материалы,- 19022004 инициируя и поддерживая реакции катионного расщепления цепи с раскрытием цикла в восстановительной среде. В некоторых вариантах осуществления пучки для облучения материалов могут включать нейтральные атомы. Например, пучки, содержащие любой один или более видов атомов из числа, к которым относятся атомы водорода, атомы гелия, атомы углерода, атомы азота, атомы кислорода, атомы неона, атомы кремния, атомы фосфора, атомы аргона и атомы железа, используют для облучения материала биомассы. Как правило, в пучках могут присутствовать смеси атомов двух или более типов (например, трех или более, четырех или более либо еще более типов). В определенных вариантах осуществления ионные пучки, используемые для облучения материалов,включают ионы с единичным зарядом, в том числе один или более из ионов Н+, Н-, Не+, Ne+, Ar+, С+, С-,O+, О-, N+, N-, Si+, Si-, P+, P-, Na+, Ca+ и Fe+. В некоторых вариантах осуществления ионные пучки могут включать ионы с кратными зарядами, в том числе один или более из ионов С 2+, С 3+, С 4+, N3+, N5+, N3-, O2+,О 2-, О 22-, Si2+, Si4+, Si2- и Si4-. Как правило, ионные пучки могут также включать более сложные многоядерные ионы, которые несут кратные положительные или отрицательные заряды. В определенных вариантах осуществления, в силу структуры многоядерного иона, положительные или отрицательные заряды могут эффективно распределяться по практически всей структуре ионов. В некоторых вариантах осуществления положительные или отрицательные заряды могут в некоторой степени локализоваться на частях структуры ионов. Электромагнитное излучение. В вариантах осуществления, в которых облучение осуществляют с помощью электромагнитного излучения, электромагнитное излучение может иметь, например, энергию на фотон (в электрон-вольтах),составляющую более чем 102 эВ, например более чем 103, 104, 105, 106 или даже более чем 107 эВ. В некоторых вариантах осуществления электромагнитное излучение имеет энергию на фотон, составляющую от 104 до 107, например от 105 до 106 эВ. Электромагнитное излучение может иметь частоту, составляющую, например, более чем 1016 Гц, более чем 1017, 1018, 1019, 1020 или даже более чем 1021 Гц. В некоторых вариантах осуществления электромагнитное излучение имеет частоту, составляющую от 1018 до 1022 Гц, например от 1019 до 1021 Гц. Гашение и регулируемая функционализация. После обработки ионизирующим излучением любые из материалов или смесей, описанных в настоящем документе, могут становиться ионизированными; т.е. обработанный материал может включать радикалы, которые можно обнаружить с помощью спектрометра электронного парамагнитного (спинового) резонанса. Если ионизированная биомасса остается в атмосфере, она будет окисляться, в том числе в такой степени, что карбоксильные группы образуются в реакции с атмосферным кислородом. В некоторых случаях для некоторых материалов такое окисление является желательным, потому что оно может способствовать дальнейшему уменьшению молекулярной массы углеводсодержащей биомассы, и окисление групп, например карбоксильных групп, может быть полезным для растворимости и использования микроорганизмов в некоторых случаях. Однако поскольку радикалы могут "жить" в течение некоторого времени после облучения, например более чем 1 сутки, 5 суток, 30 суток, 3 месяцев, 6 месяцев или даже более чем 1 год, свойства материала могут продолжать изменяться с течением времени, что в некоторых случаях может оказаться нежелательным. Таким образом, может оказаться желательным гашение ионизированного материала. После ионизации любой материал биомассы, который был ионизирован, можно гасить, чтобы уменьшить уровень радикалов в ионизированной биомассе, например, таким образом, чтобы радикалы перестали обнаруживаться с помощью спектрометра электронного парамагнитного резонанса. Например,радикалы можно гасить путем приложения достаточного давления к биомассе и/или путем использования в контакте с ионизированной биомассой текучей среды, в том числе газообразной или жидкой, которая вступает в реакцию (гашение) с радикалами. Введение газа или жидкости, чтобы, по меньшей мере,способствовать гашению радикалов, можно использовать для функционализации ионизированной биомассы, путем образования функциональных групп желательного количества и вида, включая карбоксильные группы, енольные группы, альдегидные группы, нитрогруппы, нитрильные группы, аминогруппы, алкиламиногруппы, алкильные группы, хлоралкильные группы или хлорфторалкильные группы. В некоторых случаях такое гашение может улучшать устойчивость некоторых ионизированных материалов биомассы. Например, гашение может повышать стойкость биомассы к окислению. Функционализация путем гашения может также улучшать растворимость любой биомассы, описанной в настоящем документе, может повышать термическую устойчивость и может ускорять утилизацию материала разнообразными микроорганизмами. Например, функциональные группы, образующиеся в материале биомассы в процессе гашения, могут выступать в качестве мест специфической адсорбции для прикрепления микроорганизмов, например, чтобы ускорить гидролиз целлюлозы различными микроорганизмами. В некоторых вариантах осуществления гашение включает приложение давления к биомассе, в том числе посредством механической деформации биомассы, например непосредственного механического сжатия биомассы по одному, двум или трем направлениям, или приложением давления к текучей среде,в которую погружена биомасса, используя, например, изостатическое сжатие. В таких случаях сама де- 20022004 формация материала производит радикалы, которые часто захватываются в доменах кристаллической структуры в достаточно тесной близости друг от друга, в результате чего радикалы могут рекомбинировать или реагировать с другой группой. В некоторых случаях давление прилагают вместе с подведением тепла, в том числе достаточного количества тепла для повышения температуры биомассы выше температуры плавления или температуры размягчения компонента биомассы, в том числе лигнина, целлюлозы или гемицеллюлозы. Нагреванию может повышать подвижность молекул материала, что может способствовать гашению радикалов. Когда давление используют для гашения, это давление может составлять более чем приблизительно 1000 фунтов/кв.дюйм (7 МПа), в том числе более чем приблизительно 1250 фунтов/кв.дюйм (8,75 МПа), 1450 фунтов/кв.дюйм (10,15 МПа), 3625 фунтов/кв.дюйм (25,38 МПа), 5075 фунтов/кв.дюйм (35,53 МПа), 7250 фунтов/кв.дюйм (50,75 МПа), 10000 фунтов/кв.дюйм (70 МПа) или даже более чем 15000 фунтов/кв.дюйм (105 МПа). В некоторых вариантах осуществления гашение включает контакт биомассы с текучей средой, в том числе жидкой или газообразной, например газом, способным реагировать с радикалами, в том числе ацетиленом или смесью ацетилена с азотом, этиленом, хлорированными этиленами или хлорфторэтиленами, пропиленом или смесью этих газов. В других определенных вариантах осуществления гашение включает контакт биомассы с жидкостью, например жидкостью, которая растворяется, или, по меньшей мере, способна проникать в биомассу и реагировать с радикалами, в том числе диеном, в том числе 1,5 циклоктадиеном. В некоторых особых вариантах осуществления гашение включает контакт биомассы с антиоксидантом, в том числе витамином Е. При необходимости исходный материал биомассы может включать диспергированный в ней антиоксидант, и гашение может происходить при контакте с радикалами антиоксиданта, диспергированного в исходном материале биомассы. Функционализацию можно усиливать, используя тяжелые заряженные ионы, в том числе любые из тяжелых ионов, описанных в настоящем документе. Например, если желательно ускорить окисление, для облучения можно использовать заряженные ионы кислорода. Если желательны азотные функциональные группы, можно использовать ионы азота или анионы, которые включают азот. Аналогичным образом, если желательны содержащие серу или фосфор группы, в облучении можно использовать ионы серы или фосфора. Дозы. В некоторых случаях облучение осуществляют при мощности дозы, составляющей более чем приблизительно 0,25 Мрад в секунду, например, более чем приблизительно 0,5, 0,75, 1,0, 1,5, 2,0 или даже более чем приблизительно 2,5 Мрад в секунду. В некоторых вариантах осуществления облучение осуществляют при мощности дозы, составляющей от 5,0 и 1500,0 килорад/час, например от 10,0 до 750,0 килорад/час или от 50,0 до 350,0 килорад/час. В некоторых вариантах осуществления облучение (при использовании любого источника излучения или сочетания источников) осуществляют до тех пор, пока материал не получит дозу, составляющую по меньшей мере 0,1, по меньшей мере 0,25, например по меньшей мере 1,0, по меньшей мере 2,5, по меньшей мере 5,0, по меньшей мере 10,0, по меньшей мере 60 или по меньшей мере 100 Мрад. В некоторых вариантах осуществления облучение осуществляют до тех пор, пока материал не получит дозу, составляющую от приблизительно 0,1 до приблизительно 500 Мрад, от приблизительно 0,5 до приблизительно 200 Мрад, от приблизительно 1 до приблизительно 100 Мрад или от приблизительно 5 до приблизительно 60 Мрад. В некоторых вариантах осуществления применяют относительно низкую дозу облучения,составляющую, например, менее чем 60 Мрад. Ультразвуковая обработка. Ультразвуковая обработка может уменьшать молекулярную массу и/или кристалличность материалов, в том числе одного или более из любых материалов, описанных в настоящем документе, включая,например, один или более углеводных источников, в том числе целлюлозные или лигноцеллюлозные материалы, или крахмальные материалы. Ультразвуковую обработку можно также использовать для стерилизации материалов. Как обсуждалось выше в отношении излучения, технологические параметры,используемые для ультразвуковой обработки, можно изменять в зависимости от различных факторов,например, в зависимости от содержания лигнина в исходном материале. Например, для исходных материалов с более высоким содержанием лигнина обычно требуются большие сроки выдерживания и/или уровни энергии, что приводит к повышенному количеству полной энергии, передаваемой исходному материалу. В одном способе первый материал, который включает целлюлозу, имеющую первую среднечисленную молекулярную массу (MN1), диспергирован в среде, в том числе воде, и обработан ультразвуком и/или иным способом подвергнут кавитации, чтобы получить второй материал, который включает целлюлозу, имеющую вторую среднечисленную молекулярную массу (MN2), которая ниже, чем первая среднечисленная молекулярная масса. Второй материал (или первый и второй материал в определенных вариантах осуществления) можно сочетать с микроорганизмом (с применением или без применения ферментативной обработки), который может использовать второй и/или первый материал, чтобы производить промежуточный или конечный продукт. Так как второй материал включает целлюлозу, имеющую уменьшенную молекулярную массу по сравнению с первым материалом, а в некоторых случаях также и уменьшенную кристалличность, второй материал, как правило, лучше диспергируется, набухает и/или растворяется, например, в растворе, содержащем микроорганизм. В некоторых вариантах осуществления вторая среднечисленная молекулярная масса (MN2) составляет меньше, чем первая среднечисленная молекулярная масса (MN1) более чем на приблизительно 10%,например более чем на приблизительно 15, 20, 25, 30, 35, 40, 50, 60% или даже более чем на приблизительно 75%. В некоторых случаях второй материал включает целлюлозу, которая имеет кристалличность (С 2),которая составляет меньше, чем кристалличность (C1) целлюлозы первого материала. Например, величина С 2 может быть меньше, чем величина C1 более чем на приблизительно 10%, например, более чем на приблизительно 15, 20, 25, 30, 35, 40 или даже более чем на приблизительно 50%. В некоторых вариантах осуществления исходный индекс кристалличности (до ультразвуковой обработки) составляет от приблизительно 40 до приблизительно 87,5%, например от приблизительно 50 до приблизительно 75% или от приблизительно 60 до приблизительно 70%, и индекс кристалличности после ультразвуковой обработки составляет от приблизительно 10 до приблизительно 50%, например от приблизительно 15 до приблизительно 45% или от приблизительно 20 до приблизительно 40%. Однако в определенных вариантах осуществления, например после значительной ультразвуковой обработки, можно получить индекс кристалличности, составляющий менее чем 5%. В некоторых вариантах осуществления материал после ультразвуковой обработки является практически аморфным. В некоторых вариантах осуществления исходная среднечисленная молекулярная масса (до ультразвуковой обработки) составляет от приблизительно 200000 до приблизительно 3200000, например, от приблизительно 250000 до приблизительно 1000000 или от приблизительно 250000 до приблизительно 700000, и среднечисленная молекулярная масса после ультразвуковой обработки составляет от приблизительно 50000 до приблизительно 200000, например, от приблизительно 60000 до приблизительно 150000 или от приблизительно 70000 до приблизительно 125000. Однако в некоторых вариантах осуществления, например после значительной ультразвуковой обработки, можно получить среднечисленную молекулярную массу, составляющую менее чем приблизительно 10000 или даже менее чем приблизительно 5000. В некоторых вариантах осуществления второй материал может иметь уровень окисления (О 2), который выше, чем уровень окисления (O1) первого материала. Более высокий уровень окисления материала может способствовать возможности его диспергирования, набухания и/или растворения, дополнительно повышая восприимчивость материала к химическому, ферментативному или микробному воздействию. В некоторых вариантах осуществления, чтобы повысить уровень окисления второго материала по сравнению с первым материалом, ультразвуковую обработку осуществляют в окислительной среде, получая второй материал, который является в большей степени окисленным, чем первый материал. Например, второй материал может содержать больше гидроксильных групп, альдегидных групп, кетонных групп, сложноэфирных групп или карбоксильных групп, что может увеличить его гидрофильность. В некоторых вариантах осуществления среда ультразвуковой обработки представляет собой водную среду. При необходимости среда может включать окислитель, в том числе пероксид (например, пероксид водорода), диспергатор и/или буфер. Примеры диспергаторов включают ионные диспергаторы,например лаурилсульфат натрия, и неионные диспергаторы, например полиэтиленгликоль. В других вариантах осуществления среда ультразвуковой обработки является неводной. Например,ультразвуковую обработку можно осуществлять в углеводороде, включая, например, толуол или гептан,простом эфире, включая, например, диэтиловый эфир или тетрагидрофуран, или даже в сжиженном газе,включая, например, аргон, ксенон или азот. Пиролиз. Можно использовать одну или несколько технологических операций пиролиза для обработки углеродсодержащих материалов из широкого разнообразия различных источников, чтобы извлекать полезные вещества из материалов и получать частично разложенные материалы, которые служат в качестве сырья для дальнейших технологических стадий и/или последовательностей операций. Пиролиз можно также использовать для стерилизации материала. Условия пиролиза могут различаться в зависимости от характеристик исходного материала и/или других факторов. Например, для исходных материалов с повышенным содержанием лигнина может потребоваться повышенная температура, более продолжительное время выдерживания и/или использование более высоких концентраций кислорода в процессе пиролиза. В одном примере первый материал, который включает целлюлозу, имеющую первую среднечисленную молекулярную массу (MN1), подвергают пиролизу, например, путем нагревания первого материала в трубчатой печи (в присутствии или при отсутствии кислорода), чтобы получить второй материал,который включает целлюлозу, имеющую вторую среднечисленную молекулярную массу (MN2), которая ниже, чем первая среднечисленная молекулярная масса. Так как второй материал включает целлюлозу, имеющую уменьшенную молекулярную массу по сравнению с первым материалом, а в некоторых случаях также и уменьшенную кристалличность, второй материал, как правило, лучше диспергируется, набухает и/или растворяется, например, в растворе, содержащем микроорганизм. В некоторых вариантах осуществления вторая среднечисленная молекулярная масса (MN2) является ниже, чем первая среднечисленная молекулярная масса (MN1) более чем на приблизительно 10%, например более чем на приблизительно 15, 20, 25, 30, 35, 40, 50, 60% или даже более чем на приблизительно 75%. В некоторых случаях второй материал включает целлюлозу, которая имеет кристалличность (С 2),составляющую менее чем кристалличность (C1) целлюлозы первого материала. Например, значение С 2 может быть ниже, чем значение C1 более чем на приблизительно 10%, например, более чем на приблизительно 15, 20, 25, 30, 35, 40 или даже более чем на приблизительно 50%. В некоторых вариантах осуществления исходный индекс кристалличности (до пиролиза) составляет от приблизительно 40 до приблизительно 87,5%, например от приблизительно 50 до приблизительно 75% или от приблизительно 60 до приблизительно 70%, и индекс кристалличности после пиролиза составляет от приблизительно 10 до приблизительно 50%, например от приблизительно 15 до приблизительно 45% или от приблизительно 20 до приблизительно 40%. Однако в определенных вариантах осуществления,например, после значительного пиролиза, можно получить индекс кристалличности, составляющий менее чем 5%. В некоторых вариантах осуществления материал после пиролиза является практически аморфным. В некоторых вариантах осуществления исходная среднечисленная молекулярная масса (до пиролиза) составляет от приблизительно 200000 до приблизительно 3200000, например от приблизительно 250000 до приблизительно 1000000 или от приблизительно 250000 до приблизительно 700000, и среднечисленная молекулярная масса после пиролиза составляет от приблизительно 50000 до приблизительно 200000, например от приблизительно 60000 до приблизительно 150000 или от приблизительно 70000 до приблизительно 125000. Однако в некоторых вариантах осуществления, например после значительного пиролиза, можно получить среднечисленную молекулярную массу, составляющую менее чем приблизительно 10000 или даже менее чем приблизительно 5000. В некоторых вариантах осуществления второй материал может иметь уровень окисления (О 2), который является выше, чем уровень окисления (O1) первого материала. Более высокий уровень окисления материала может способствовать возможности его диспергирования, набухания и/или растворения, дополнительно повышая восприимчивость материала к химическому, ферментативному микробному воздействию. В некоторых вариантах осуществления, чтобы повысить уровень окисления второго материала по сравнению с первым материалом, пиролиз осуществляют в окислительной среде, получая второй материал, который является окисленным в большей степени, чем первый материал. Например, второй материал может содержать больше гидроксильных групп, альдегидных групп, кетонных групп, сложноэфирных групп или карбоксильных групп, чем первый материал, в результате чего увеличивается гидрофильность материала. В некоторых вариантах осуществления пиролиз материалов является непрерывным. В других вариантах осуществления материал подвергают пиролизу в течение заданного периода времени и затем оставляют охлаждаться в течение второго заданного периода времени, прежде чем снова подвергнуть его пиролизу. Окисление. Один или более способов окислительной обработки можно использовать для обработки углеродсодержащих материалов из широкого разнообразия различных источников, чтобы извлекать полезные вещества из материалов и получать частично разложенные и/или измененные материалы, которые служат в качестве сырья для дальнейших технологических стадий и/или последовательностей операций. Условия окисления можно изменять, например, в зависимости от содержания лигнина в исходном материале,причем более высокая степень окисления, как правило, является желательной для более высокого содержания лигнина в исходных материалах. В одном способе первый материал, который включает целлюлозу, имеющую первую среднечисленную молекулярную массу (MN1) и имеет первое содержание кислорода (O1), окисляют, например, нагреванием первый материал в потоке воздуха или обогащенного кислородом воздуха, чтобы получить второй материал, который включает целлюлозу, имеющую вторую среднечисленную молекулярную массу(MN2), и имеет второе содержание кислорода (О 2), превышающее первое содержание кислорода (O1). Вторая среднечисленная молекулярная масса второго материала, как правило, составляет меньше,чем первая среднечисленная молекулярная масса первого материала. Например, молекулярную массу можно уменьшать в такой же степени, как обсуждалось выше по отношению к другим видам физической обработки. Кристалличность второго материала можно также уменьшать в такой же степени, как обсуждалось выше по отношению к другим видам физической обработки. В некоторых вариантах осуществления второе содержание кислорода составляет по меньшей мере на приблизительно 5% выше, чем первое содержание кислорода, например на 7,5% выше, на 10,0% выше, на 12,5% выше, на 15,0% выше или на 17,5% выше. В некоторых предпочтительных вариантах осуществления второе содержание кислорода составляет, по меньшей мере, на приблизительно 20,0% выше,- 23022004 чем первое содержание кислорода первого материала. Содержание кислорода измеряют элементным анализом путем пиролиза образца в печи, работающей при 1300 С или более высокой температуре. Подходящим устройством для элементного анализа является анализатор LECO CHNS-932 с печью VTF-900 для высокотемпературного пиролиза. Как правило, окисление материала происходит в окислительной среде. Например, окисление можно осуществлять или ему можно способствовать путем пиролиза в окислительной среде, в том числе в атмосфере воздуха или обогащенного воздухом аргона. Чтобы способствовать окислению, можно добавлять различные химические реагенты, в том числе окислители, кислоты или основания к материалу до или во время окисления. Например, пероксид (например, бензоилпероксид) можно добавлять до окисления. В некоторых окислительных способах уменьшения стойкости исходного материала биомассы используют химические реакции типа реакции Фентона (Fenton). Такие способы описаны, например, в патентной заявке США 12/639289, полное описание которой включено в настоящий документ посредством ссылки. Примерные окислители включают пероксиды, в том числе пероксид водорода и бензоилпероксид,персульфаты, в том числе персульфат аммония, активированные формы кислорода, в том числе озон,перманганаты, в том числе перманганат калия, перхлораты, в том числе перхлорат натрия, и гипохлориты, в том числе гипохлорит натрия (отбеливатель для домашнего хозяйства) . В некоторых ситуациях в процессе контакта величину рН поддерживают на уровне или ниже чем приблизительно 5,5, в том числе в интервале от 1 до 5, от 2 до 5, от 2,5 до 5 или от приблизительно 3 до 5. Условия окисления могут также включать период контакта, составляющий от 2 до 12 ч, например от 4 до 10 или от 5 до 8 ч. В некоторых случаях температуру поддерживают на уровне или ниже чем 300 С, например на уровне или ниже 250, 200, 150, 100 или 50 С. В некоторых случаях температура остается практически равной температуре окружающей среды, например на уровне или приблизительно 20-25 С. В некоторых вариантах осуществления один или более окислителей используют в виде газа, в том числе путем образования озона на месте использования при облучении материала через воздух пучком частиц, в том числе электронов. В некоторых вариантах осуществления смесь дополнительно включает один или более гидрохинонов, в том числе 2,5-диметоксигидрохинон (DMHQ) и/или один или более бензохинонов, в том числе 2,5 диметокси-1,4-бензохинон (DMBQ), которые могут способствовать в реакции переноса электронов. В некоторых вариантах осуществления один или более окислителей электрохимически получают на месте применения. Например, пероксид водорода и/или озон можно электрохимически производить в контакте или в реакционном сосуде. Другие способы солюбилизации, уменьшения стойкости или функционализации. Любые из способов данного параграфа можно использовать индивидуально без каких-либо способов, описанных в настоящем документе, или в сочетании с любыми из способов, описанных в настоящем документе (в любом порядке): паровой взрыв, химическая обработка (например, кислотная обработка(включая кислотную обработку концентрированными и разбавленными минеральными кислотами, в том числе серная кислота, соляная кислота, и органическими кислотами, в том числе трифторуксусная кислота) и/или щелочная обработка (например, обработка известью или гидроксидом натрия, ультрафиолетовое облучение, обработка методом червячной экструзии (см., например, патентную заявку США 61/115398, поданную 17 ноября, 2008 г.), обработка растворителями (например, обработка ионными жидкостями) и криопомол (см., например, патентную заявку США 12/502629). Получение топлива, кислот, сложных эфиров и/или других продуктов. После выполнения с биомассой одной или более стадий обработки, описанных выше, сложные углеводы, которые содержатся в целлюлозной и гемицеллюлозной фракциях, можно перерабатывать в пригодные для ферментации сахара, используя способ осахаривания, который обсуждается выше. После перевозки полученного раствора сахара на производственное предприятие сахара можно превращать в разнообразные продукты, в том числе спирты, например, этанол, или органические кислоты. Полученный продукт зависит от используемых микроорганизмов и условий, в которых происходит биообработка. Эти стадии можно осуществлять, например, используя существующее оборудование завода по производству этанола на основе кукурузы. Способы и оборудование для перемешивания, которые обсуждаются в настоящем документе, можно также использовать в процессе биообработки, если это желательно. Как преимущество, перемешивание системы, описанной в настоящем документе, не прилагает большого усилия сдвига к жидкости и не приводит к существенному повышению температуры жидкости. В результате используемые в биообработке микроорганизмы поддерживаются в жизнеспособном состоянии в ходе всего процесса. Перемешивание может повышать скорость реакции и увеличивать эффективность способа. Как правило, в ферментации используют различные микроорганизмы. Раствор сахара, полученный осахариванием лигноцеллюлозных материалов, обычно содержит ксилозу, а также глюкозу. Может оказаться желательным отделять ксилозу, например, методом хроматографии, потому что обычно исполь- 24022004 зуемые микроорганизмы (например, дрожжи) не воздействуют на ксилозу. Ксилозу можно собирать и использовать в производстве других продуктов, например кормов для животных и заменителя сахара под названием "ксилит". Ксилозу можно отделять до или после доставки раствора сахара на производственное предприятие, где будет проходить ферментация. Микроорганизм может представлять собой встречающийся в природе микроорганизм или генетически модифицированный микроорганизм, например,любой из микроорганизмов, обсуждаемых в разделе "Материалы" настоящего документа. Оптимальное значение рН для дрожжей составляет приблизительно от 4 до 5, в то время как оптимальное значение рН для бактерий Zymomonas составляет приблизительно от 5 до 6. Типичная продолжительность ферментации составляет приблизительно от 24 до 96 ч при температуре в интервале от 26 до 40 С, однако для термофильных микроорганизмов предпочтительны более высокие температуры. Карбоксильные группы обычно снижают значение рН раствора для ферментации, стремясь к ингибированию ферментации с участием некоторых микроорганизмов, включая Pichia stipitis. Соответственно, в некоторых случаях желательно добавление основания и/или буфер до или во время ферментации,чтобы повышать значение рН раствора. Например, можно добавлять гидроксид натрия или известь в ферментационную среду для увеличения значения рН среды до интервала, который является оптимальным для используемого микроорганизма. Ферментацию обычно проводят в водной питательной среде, которая может содержать источник азота или источник другого питательного вещества, например мочевины, а также витамины и микроэлементы и металлы. Как правило, предпочтительно, чтобы питательная среда была стерильной или, по меньшей мере, несла низкую микробную нагрузку, например низкое количество бактерий. Стерилизацию питательной среды можно осуществлять любым желательным способом. Однако в предпочтительных вариантах осуществления стерилизацию осуществляют облучением питательной среды или отдельных компонентов питательной среды перед перемешиванием. Дозу облучения обычно устанавливают на минимальном возможном уровне, который все же обеспечивает получение надлежащих результатов,чтобы свести к минимуму потребление энергии и понесенные в результате расходы. Например, во многих случаях саму питательную среду или компоненты питательной среды можно обрабатывать дозой облучения, составляющей менее чем 5 Мрад, в том числе менее чем 4, 3, 2 или 1 Мрад. В определенных случаях питательную среду обрабатывают дозой, составляющей приблизительно от 1 до 3 Мрад. В некоторых вариантах осуществления процесс ферментации можно прерывать полностью или частично до полного превращения низкомолекулярного сахара в этанол. Промежуточные продукты ферментации включают высококонцентрированный сахар и углеводы. Эти промежуточные продукты ферментации можно использовать в производстве продуктов для питания человека или животных. В качестве дополнения или альтернативы, промежуточные продукты ферментации можно измельчать до мелкодисперсных частиц, используя лабораторную мельницу из нержавеющей стали и получая напоминающий муку материал. Можно использовать мобильные ферментеры, как описано во временной патентной заявке США 60/832735 и в опубликованной в настоящее время международной патентной заявкеWO 2008/011598. Аналогичным образом, оборудование для осахаривания может быть мобильным. Кроме того, осахаривание и/или ферментацию можно осуществлять частично или полностью в процессе перевозки. Последующая обработка. После ферментации полученные текучие среды можно дистиллировать, используя, например,"бражную колонну", чтобы отделить этанол и другие спирты от составляющей основную массу воды и остаточной твердой фазы. Пар, выходящий из колонны, может содержать, например, 35 мас.% этанола и может поступать в ректификационную колонну. Почти азеотропную смесь (92,5%) этанола и воды из ректификационной колонны можно очищать и получать чистый (99,5%) этанол, используя парофазные молекулярные сита. Донные осадки из бражной колонны можно направлять на первую стадию трехстадийного испарителя. Дефлегматор ректификационной колонны может обеспечивать тепло для этой первой стадии. После первой стадии твердую фазу можно отделять с помощью центрифуги и сушить в роторной сушилке. Часть (25%) выходящей из центрифуги текучей среды можно возвращать на ферментацию, а остаток направлять на вторую и третью стадию испарителя. Большую часть конденсата из испарителя можно возвращать в процесс в виде достаточно чистого конденсата, а небольшую часть отделять для обработки сточной воды, чтобы предотвратить образование низкокипящих соединений. Промежуточные и конечные продукты. Способы, описанные в настоящем документе, можно использовать для производства одного или более промежуточных или конечных продуктов, включая энергию, топливо, пищевые продукты и материалы. Конкретные примеры продуктов включают, но не ограничиваются этим, водород, спирты (например, одноатомные спирты или двухатомные спирты, в том числе этанол, н-пропанол или н-бутанол),гидратированные или водные спирты, например, содержащие более чем 10, 20, 30% или даже более чем 40% воды, ксилит, сахара, биодизельное топливо, органические кислоты (например, уксусная кислота и/или молочная кислота), углеводороды, сопутствующие продукты (например, белки, в том числе целлюлитические белки (ферменты) или генетически однородные белки) и смеси любых данных продуктов в любых сочетаниях или относительных концентрациях, и необязательно в сочетании с любыми добав- 25022004 ками, включая, например, топливные добавки. Другие примеры включают карбоновые кислоты, в том числе уксусную кислоту или масляную кислоты, соли карбоновых кислот, смеси карбоновых кислот и солей карбоновых кислот, сложные эфиры карбоновых кислот (например, метиловые, этиловые и нпропиловые сложные эфиры), кетоны (например, ацетон), альдегиды (например, ацетальдегид), ,ненасыщенные кислоты, в том числе акриловую кислоту, и олефины, в том числе этилен. Другие спирты и производные спиртов включают пропанол, пропиленгликоль, 1,4-бутандиол, 1,3-пропандиол, метиловые или этиловые простые эфиры данных спиртов. Другие продукты включают метилакрилат, метилметакрилат, молочную кислоту, пропионовую кислоту, масляную кислоту, янтарную кислоту, 3 гидроксипропионовую кислоту, соли любых данных кислот и смеси любых кислот и соответствующих солей. Другие промежуточные и конечные продуктов, включая продукты питания и фармацевтические изделия, описаны в патентной заявке США 12/417900, полное описание которой включено посредством ссылки в настоящий документ. Пример. Резаный бумажный исходный материал приготовляли следующим образом. Партию, содержащую 1500 фунтов (681 кг) не бывших в употреблении полугаллоновых (1,89 л) упаковок для сока, изготовленных из белого крафт-картона с многослойным покрытием без печати,имеющего объемную плотность 20 фунтов на куб.фут (320 кг/м 3), получали от фирмы International Paper. Каждую упаковку складывали в плоское состояние и затем направляли в измельчитель Flinch Baugh мощностью 3 л. с. (2,24 кВт) со скоростью, составлявшей приблизительно от 15 до 20 фунтов в час (1,892,52 г/с). Измельчитель был оборудован двумя 12-дюймовыми (30,48 см) вращающимися лезвиями, двумя неподвижными лезвиями и 0,30-дюймовым (7,62 мм) ситом на выходе. Расстояние между вращающимися и неподвижными лезвиями устанавливали на уровне 0,10 дюйма (2,54 мм). Выходящий из измельчителя продукт напоминал конфетти и имел ширину от 0,1 до 0,5 дюйма (2,54-12,7 мм), длину от 0,25 до 1 дюйма (6,35-25,4 мм) и толщину, равную толщине исходного материала (приблизительно 0,075 дюйма или 1,9 мм). Напоминающий конфетти материал поступал в резак Munson модели SC30 с дисковыми лезвиями. Модель SC30 содержит четыре вращающихся лезвия, четыре неподвижных лезвия и сито на выходе,имеющее 1/8-дюймовые (3,18 мм) отверстия. Расстояние между вращающимися и неподвижными лезвиями устанавливали приблизительно на уровне 0,020 дюйма (0,5 мм). Резак с дисковыми лезвиями разрезал напоминающие конфетти частицы в поперечном лезвиям направлении, разделяя частицы и образуя волокнистый материал со скоростью, составлявшей приблизительно один фунт в час (0,126 г/с). Волокнистый материал имел удельную поверхность по методу BET 0,9748 м 2/г +/-0,0167 м 2/г, пористость 89,0437% и объемную плотность (при абсолютном давлении 0,53 фунта на кв. дюйм или 3,71 кПа) 0,1260 г/мл. Средняя длина волокон составляла 1,141 мм, и средняя ширина волокон составляла 0,027 мм, давая среднее соотношение L/D=42:l. Для осахаривания бумажного исходного материала в сосуд добавляли первые 7 л воды. В процессе осахаривания температуру воды поддерживали на уровне 50 С и значение рН поддерживали на уровне 5. Исходный материал добавляли в воду порциями, как показано в приведенной ниже таблице. После добавления каждой порции перемешивание осуществляли до диспергирования исходного материала, после чего добавляли смесь двух ферментов, также согласно приведенной ниже таблице (фермент 1 представлял собой комплексный фермент Accellerase 1500. Фермент 2 представлял собой фермент целлобиазуNovozyme 188.) После каждого добавления перемешивание осуществляли сначала со скоростью 10000 об/мин, после диспергирования исходного материала затем скорость смесителя снижали до 4000 об/мин. Использовали струйный смеситель IKA Werks T-50 с устройством для струйного перешивания 50K-G-45. Исходный материал добавляли порциями, потому что было необходимо, по меньшей мере, частичное осахаривание исходного материала перед добавлением следующей порции; в противном случае перемешивание смеси было бы затруднительным. Согласно наблюдениям, требовалось меньшее количество фермента для получения данного уровня глюкозы, чем требовалось в предыдущих экспериментах с встряхиванием колбы. Никакого загрязнения нежелательными микроорганизмами, в том числе плесенью,не наблюдали в течение первых 300 ч. Приблизительно через 300 ч похожий на плесень организм наблюдали на стенках резервуара, где концентрация сахара была минимальной, но не в самом резервуаре. Добавление 1600 г осуществляли в течение нескольких часов. Другие варианты осуществления. Описан ряд вариантов осуществления настоящего изобретения. Тем не менее, будет понятно, что можно произвести различные модификации без отклонения от духа и выхода за пределы объема настоящего изобретения. Например, струйные смесители, описанные в настоящем документе, можно использовать в любом желательном сочетании и/или в сочетании со смесителями других типов. Можно устанавливать струйный смеситель (струйные смесители) в любом желательном положении в резервуаре. Что касается установленных на валу струйных смесителей, этот вал может быть коллинеарным с центральной осью резервуара или может быть смещен из этого положения. Например, при необходимости резервуар можно оборудовать установленным в центральном положении смесителем другого типа, например морским лопастным колесом или колесом с прямыми лопастями типа Раштона (Rushton),и струйный смеситель можно установить в другую область резервуара, как со смещением от центральной оси, так и на центральной оси. В последнем случае смеситель может выступать из верхней части резервуара, в то время как другой выступает вниз из пола резервуара. В любой из систем для струйного перемешивания, описанных в настоящем документе, движение текучей среды (жидкости и/или газа) через струйный смеситель может быть непрерывным или импульсным или сочетающим периоды непрерывного движения с интервалами импульсного движения. Когда поток является импульсным, эти чередование импульсов может быть регулярными или нерегулярным. В последнем случае мотор, который приводит в движение текучую среду, можно запрограммировать, например, таким образом, чтобы создавать импульсный поток с интервалами и предотвращать "застывание" перемешивания. Частота импульсного потока может составлять, например, от приблизительно 0,5 до приблизительно 10 Гц, например, приблизительно 0,5, 0,75, 1,0, 2,0, 5 или 10 Гц. Импульсный поток можно создавать включением и выключением мотора и/или установкой отводящего поток козырька, который прерывает движение текучей среды. Хотя в настоящем документе были указаны резервуары, струйное перемешивание можно использовать для любого типа сосуда или контейнера, включая отстойники, пруды, водохранилища и т.п. Если контейнер, в котором происходит перемешивание, представляет собой подземную структуру, в том числе отстойник, он может быть облицован. Контейнер может быть закрытым, например, если он находится вне помещения, или незакрытым. Хотя в настоящем документе была описана биомасса в качестве исходного материала, можно использовать другие исходные материалы и смеси исходных материалов на основе биомассы с другими исходными материалами. Например, в некоторых вариантах осуществления можно использовать смеси исходных материалов на основе биомассы с углеродсодержащими исходными материалами, в том числе теми, которые описаны во временной патентной заявке США 61/226877, поданной 20 июля 2009 г.,полное описание которой включено в настоящий документ посредством ссылки. Соответственно, другие варианты осуществления находятся в пределах следующей формулы изобретения. ФОРМУЛА ИЗОБРЕТЕНИЯ 1. Способ осахаривания исходного материала, включающий осахаривание биомассы в качестве исходного материала в сосуде путем е перемешивания с текучей средой и осахаривающим агентом с помощью струйного смесителя, содержащего вал и лопастное колесо, установленное на конце вала, и кожух, окружающий лопастное колесо, где сосуд имеет куполообразное дно, а вертикальная ось вала струйно-поточного смесителя смещена от центральной оси сосуда. 2. Способ по п.1, в котором исходный материал имеет объемную плотность, составляющую менее чем 0,5 г/см 3. 3. Способ по п.1 или 2, в котором текучая среда включает воду. 4. Способ по любому из предыдущих пунктов, в котором осахаривающий агент включает фермент. 5. Способ по любому из пп.1-4, в котором струйный смеситель содержит множество струйнопоточных смесителей, причем каждый из струйных смесителей обеспечивает движение текучей среды в первом и втором режимах, обеспечивая нагнетание текучей среды соответственно в верхнюю и в нижнюю часть сосуда. 6. Способ по п.5, в котором в течение по меньшей мере части времени перемешивания все струйнопоточные смесители работают в первом режиме. 7. Способ по п.5 или 6, в котором в течение по меньшей мере части времени перемешивания некоторые струйно-поточные смесители работают в первом режиме, в то время как другие работают во втором режиме. 8. Способ по п.6, дополнительно включающий добавление микроорганизма в сосуд и ферментацию осахаренного исходного материала, в котором в течение по меньшей мере части времени ферментации все струйно-поточные смесители работают в первом режиме. 9. Способ по любому из предыдущих пунктов, в котором осахаривание включает добавление исходного материала в текучую среду отдельными порциями и перемешивание каждой порции исходного материала с текучей средой с помощью струйного смесителя перед добавлением следующей порции исходного материала. 10. Способ по любому из предыдущих пунктов, дополнительно включающий измерение содержания глюкозы в смеси исходного материала, текучей среды и осахаривающего агента в процессе работы струйного смесителя. 11. Способ по любому из предыдущих пунктов, включающий дополнительное введение исходного материала и осахаривающего агента в сосуд в процессе осахаривания. 12. Способ по любому из предыдущих пунктов, в котором указанный сосуд представляет собой резервуар железнодорожной цистерны или автомобильной цистерны. 13. Способ по любому из предыдущих пунктов, в котором исходный материал включает целлюлозный или лигноцеллюлозный материал. 14. Способ по п.13, в котором исходный материал включает бумагу. 15. Способ по любому из предыдущих пунктов, дополнительно включающий добавление эмульгатора или поверхностно-активного вещества в смесь в сосуде. 16. Способ по любому из предыдущих пунктов, который включает добавление микроорганизма в сосуд и ферментацию осахаренного исходного материала.

МПК / Метки

МПК: C12P 7/10, C12P 19/02, C12M 1/02, C13K 1/02, C12P 19/14, C12P 7/08

Метки: осахаривания, биомассы, способ

Код ссылки

<a href="http://easpatents.com/30-22004-sposob-osaharivaniya-biomassy.html" rel="bookmark" title="База патентов Евразийского Союза">Способ осахаривания биомассы</a>

Похожие патенты